Boundary Value Testing

Chapter 5
Introduction

- Input domain testing is the most commonly taught (and perhaps the most commonly used) software testing technique

- There are a number of approaches to boundary value analysis

- We will study some of the limitations of domain testing
Program view for boundary analysis

- What is the view we take of a program for boundary analysis?
Many programs can be viewed as a function F that maps values from a set A (its domain) to values in another set B (its range).

The input variables of F will have some (possibly unstated) boundaries:

$$F(x_1, x_2) : A \rightarrow B$$

$$a \leq x_1 \leq b \quad c \leq x_2 \leq d$$
What is BVA?

- What is boundary analysis?
What is BVA – 2

- For each variable, select five values
 - Min: The minimum
 - Min+: Slightly above the minimum
 - Nom: Nominal
 - Max–: Slightly below the maximum
 - Max: Maximum
Rational for BVA

- What is the rationale for BVA?
What is the rationale for BVA?

- Errors occur at boundaries because people
 - Mistake logical relations such as mixing \(<\) with \(\leq\)
 - Are off by one in counting
 - Fence posts and rails
Critical assumption

- What is the critical assumption made with boundary value testing?
Critical assumption

- What is the critical assumption made with boundary value testing?

- Single Fault Assumption
 - Failures are rarely the result of the simultaneous occurrence of two (or more) faults
Single fault assumption

- Based on this assumption
 - How are test cases selected when multiple variables are involved?
Single fault assumption – 2

- Generate test cases as such for all i
 - Values of all but one variable x_i at nominal
 - x_i assumes the four non-nominal values from the slide
 Boundary Analysis – 2
 - One test case with all nominal values

- What are the number of test cases?

See Figure 5.2
Single fault assumption – 3

- Generate test cases as such for all i
 - Values of all but one variable x_i at nominal
 - x_i assumes the four non-nominal values from the slide
 Boundary Analysis – 2
 - One test case with all nominal values

- What are the number of test cases?
 - $#\text{Variables} \times 4 + 1$
Two-variable function test cases

Apply BVA to the Triangle problem

\[1 \leq a \leq 200 \]
\[1 \leq b \leq 200 \]
\[1 \leq c \leq 200 \]
Advantages

- When does boundary value analysis work well?
Advantages – 2

- Independent variables
 - Single fault assumption

- Physical quantities

- Languages that are not strongly typed
 - Why were strongly typed languages developed?
Advantages – 3

- Independent variables
 - Single fault assumption

- Physical quantities

- Languages that are not strongly typed
 - Why were strongly typed languages developed?
 - To prevent errors easily found with BVA
Limitations

- What are the limitations of boundary value analysis?
Limitations – 2

- Does not work well for Boolean variables
 - Why are these not suitable?

- Does not work well for logical variables
 - PIN, transaction type
 - Why are these not suitable?

- When variables are not independent – i.e. are dependent
 - What example does the textbook give?

- Not that useful for strongly-typed languages
Variations of boundary value analysis

- What extensions or variations are made for boundary value analysis?

- What is the justification for each?
Extensions

- Robustness testing
- Worst case testing
- Robust worst case testing
- Special value testing
- Random testing
Robustness testing

- What is robustness testing?
Robustness testing – 2

- Add two more values per variable
 - Max+ Slightly greater than the maximum
 - Min– Slightly less than the minimum

- What is the expected output?
 - Hopefully error message, system recovers

- Implementing these test cases may not be possible
 - What is the difficulty?

See Figure 5.3
Robustness testing – 3

- Add two more values per variable
 - Max+ Slightly greater than the maximum
 - Min– Slightly less than the minimum

- What is the expected output?
 - Hopefully error message, system recovers

- Implementing these test cases may not be possible
 - What is the difficulty?
 - Determining the expected output for out of range values

See Figure 5.3
Robustness testing – 4

- What are the number of test cases?
- When is robust testing mandated?
Robustness testing – 5

- What are the number of test cases?
 - \#variables * 6 + 1

- When is robust testing mandated?
 - With exception handling
Worst case testing

- What is worst case testing?
Worst-Case Testing – 2

- Rejects the simple fault assumption and tests all **combinations** of values

- Often leads to a large number of test cases with low bug-finding power
 - Why?

 See Figure 5.4

- What are the number of test cases?
Worst-Case Testing – 3

- Rejects the simple fault assumption and tests all combinations of values

- Often leads to a large number of test cases with low bug-finding power
 - Why?
 - Typically there are few bugs compared to the number of tests

- What are the number of test cases?
 - $5^\#variables$

See Figure 5.4
What type of testing is better to do in place of worst case testing?
Worst-Case Testing – 5

What type of testing is better to do in place of worst case testing?

- Often better to use Special Value Testing
Robust worst case testing

- What is robust worst case testing?
Robust worst case testing – 2

- Add the values min– and max+ to the possible variable values

- Now take all combinations of variable values

- **What are the number of test cases?**
Special value testing

- What is special value testing?
Special value testing – 2

- Use best engineering judgment
 - Intuition
 - Domain knowledge
 - Experience
 - Soft spots
In class activity

- Do exercises 1, 2 and 3
Random testing

- Select random values for each variable

- How many tests do we make?
Random testing – 2

- Select random values for each variable

- **How many tests do we make?**
 - Related to the probability of producing every outcome at least once
 - Related to the probability of executing every statement / path at least once