
Test automation / JUnit

Building automatically repeatable test suites

JU–2

JUnit in Eclipse

 For this course, we will use JUnit in Eclipse
 It is automatically a part of Eclipse
 One documentation site (all one line

 www.ibm.com/developerworks/java/tutorials/
j-junit4/section5.html

 JUnit can be downloaded from www.junit.org

 Eclipse contains wizards to help with the development of
test suites with JUnit

 JUnit results are presented in an Eclipse window

JU–3

Test automation

 Test automation is software that automates any aspect of
testing
 Generating test inputs and expected results
 Running test suites without manual intervention
 Evaluating pass/no pass

 Testing must be automated to be effective and repeatable

JU–4

Automated testing steps

 Exercise the implementation with the automated test suite

 Repair faults revealed by failures

 Rerun the test suite on the revised implementation

 Evaluate test suite coverage

 Enhance the test suite to achieve coverage goals

 Rerun the automated test suite to support regression testing

JU–5

Automated testing advantages

 Permits quick and efficient verification of bug fixes

 Speeds debugging and reduces “bad fixes”

 Allows consistent capture and analysis of test results

 Its cost is recovered through increased productivity and better
system quality

 More time to design better tests, rather than entering and
reentering tests

JU–6

Automated testing advantages

 Unlike manual testing, it is not error-prone and tedious

 Only feasible way to do regression testing

 Necessary to run long and complex tests

 Easily evaluates large quantities of output

JU–7

Limitations and caveats

 A skilled tester can use his experience to react to manual
testing results by improvising effective tests

 Automated tests are expensive to create and maintain

 If the implementation is changing frequently, maintaining the
test suite might be difficult

JU–8

XP approach to testing

 In the Extreme Programming approach
 Tests are written before the code itself
 If the code has no automated test cases, it is assumed not

to work
 A testing framework is used so that automated testing can

be done after every small change to the code
 This may be as often as every 5 or 10 minutes

 If a bug is found after development, a test is created to keep
the bug from coming back

JU–9

XP consequences

 Fewer bugs

 More maintainable code

 The code can be refactored without fear

 Continuous integration
 During development, the program always works
 It may not do everything required, but what it does, it does

right

JU–10

JUnit

 JUnit is a framework for writing tests
 Written by Erich Gamma (of Design Patterns fame) and Kent

Beck (creator of XP methodology)
 Uses Java 5 features such as annotations and static

imports

 JUnit helps the programmer:
 define and execute tests and test suites
 formalize requirements
 write and debug code
 integrate code and always be ready to release a working

version

JU–11

Terminology

 A test fixture sets up the data (both objects and primitives)
that are needed for every test
 Example: If you are testing code that updates an employee

record, you need an employee record to test it on

 A unit test is a test of a single class

 A test case tests the response of a single method to a
particular set of inputs

 A test suite is a collection of unit tests

 A test runner is software that runs tests and reports results

JU–12

Example Currency program

package currency;
public class Currency {
protected int amount;
protected String type;
Currency(int amt, String typ) { amount = amt; type = typ; }
public boolean equals(Object obj) {
 return amount == ((Currency) obj).amount
 && type == ((Currency) obj).type; }
protected Currency times(int multiplier) {
 return new Currency(amount * multiplier, type); }
static Currency dollar(int amt) { return new Currency(amt, "Dollar"); }
static Currency franc(int amt){ return new Currency(amt, "Franc"); }
}

JU–13

Example Currency test program – 1 of 2

package currency;
import org.junit.*;
import static org.junit.Assert.assertTrue;
public class Currency_Test {
@BeforeClass
public static void setUpBeforeClass() throws Exception { }
@AfterClass
public static void tearDownAfterClass() throws Exception { }
@Before
public static void setUp() throws Exception { }
@After
public static void tearDown() throws Exception { }
…

JU–14

Example Currency test program – 2 of 2

…
public void testEquality() {
 assertTrue(new Currency(5, "Franc").equals(new Currency(5, "Franc")));
 assertFalse(new Currency(5, "Franc").equals(new Currency(6, "Franc")));
 assertFalse(new Currency(5, "Franc").equals(new Currency(5, "Currency")));
}
public void testMultiplication() {
 Currency five = new Currency(5, "Dollar");
 assertEquals(new Currency(15, "Dollar"), five.times(3)); }
public void testCurrencyType()
 assertEquals("Dollar", Currency.dollar(1).type);
 assertEquals("Franc", Currency.franc(1).type);
}
}

JU–15

Example running multiple test classes

package currency;

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({
 Currency_BoundaryTest.class,
 Currency_EquivalenceTest.class ,
 Currency_DecisionTest.class ,
})

public class AllTests {
}

}

JU–16

Test fixtures

 Methods annotated with @Before will execute before every
test case

 Methods annotated with @After will execute after every test
case

 The routine names are your choice

@Before
public static void setUp() {…}

@After
public static void tearDown() {…}

JU–17

Class Test fixtures

 Methods annotated with @BeforeClass will execute once
before all test cases

 Methods annotated with @AfterClass will execute once
after all test cases

 These are useful if you need to allocate and release
expensive resources once

@BeforeClass
public static void setUpBeforeClass() {…}

@AfterClass
public static void tearDownAfterClass() {…}

JU–18

Test cases

 Methods annotated with @Test are considered to be test
cases
 Need before every test that you want to execute

@Test
public void test_add() {…}

@Test
public void test_ToString() {…}

JU–19

Ignoring test cases

 Test cases that are not to be executed are annotated with
@Ignore
 While making corrections due to other test failures

 Can avoid executing expensive tests
 Can avoid executing incompletely written tests

@Ignore
public void test_add() {…}

@Ignore
public void test_ToString() {…}

JU–20

What JUnit does

 For each test case aTestCase
 JUnit executes all @Before methods

 Their order of execution is not specified

 JUnit executes aTestCase
 Any exceptions during its execution are logged

 JUnit executes all @After methods
 Their order of execution is not specified

 A report for all test cases is presented

JU–21

Within a test case

 Call the methods of the class being tested

 Assert what the correct result should be with one of the
provided assert methods

 These steps can be repeated as many times as necessary

 An assert method is a JUnit method that performs a test, and
throws an AssertionError if the test fails
 JUnit catches these exceptions and shows you the results

 Only the first failed assert

JU–22

List of assert methods 1

 assertTrue(boolean b)
assertTrue(String s, boolean b)
 Throws an AssertionError if b is False
 The optional message s is included in the Error

 assertFalse(boolean b)
assertFalse(String s, boolean b)
 Throws an AssertionError if b is True
 All assert methods have an optional message

JU–23

Example: Counter class

 Consider a trivial “counter” class
 The constructor creates a counter and sets it to zero

 The increment method adds one to the counter and
returns the new value

 The decrement method subtracts one from the counter
and returns the new value

 The corresponding JUnit test class is on the next slide

JU–24

Example JUnit test class for counter program

public class CounterTest {
Counter counter1;

@Before

 public void setUp() { // create a test fixture
counter1 = new Counter();

}

 @Test

 public void testIncrement() {
 assertTrue(counter1.increment() == 1);
 assertTrue(counter1.increment() == 2);
}

@Test

 public void testDecrement() {
 assertTrue(counter1.decrement() == -1);
}

}

Each test begins with a brand new
counter. No need consider the
order in which the tests are run.

JU–25

List of assert methods 2

 assertEquals(Object expected,
 Object actual)

 Uses the equals method to compare the two objects
 Casting may be required when passing primitives,

although autoboxing may be done
 There is also a version to compare arrays

JU–26

List of assert methods 3

 assertSame(Object expected,
 Object actual)
 Asserts that two references are attached to the same

object (using ==)

 assertNotSame(Object expected,
 Object actual)
 Asserts that two references are not attached to the same

object

JU–27

List of assert methods 4

 assertNull(Object object)
 Asserts that a reference is null

 assertNotNull(Object object)
 Asserts that a reference is not null

 fail()
 Causes the test to fail and throw an AssertionError
 Useful as a result of a complex test, or when testing for

exceptions

JU–28

Testing for exceptions

 If a test case is expected to raise an exception, it can be
noted as follows and on the next slide

@Test(expected = Exception.class)
public void testException() {
 //Code that should raise an exception
 fail("Should raise an exception");
}

JU–29

Testing for exceptions – example

public void testAnIOExceptionIsThrown {
 try
 {
 // Code that should raise an IO exception
 fail("Expected an IO exception");
 }
 catch (IOException e)
 {
 // This is the expected result,
 // leave it empty so that the test
 // will pass. If you care about
 // particulars of the exception, you
 // can test various assertions about
 // the exception object
 }
}

JU–30

The assert statement

 A statement such as
assert boolean_condition;

 will also throw an AssertionError if the boolean_condition
is false

 Can be used instead of the JUnit assertTrue method

JU–31

Automated testing issues

 It isnʼt easy to see how to unit test GUI code

 JUnit is designed to call methods and compare the
results they return against expected results
 This works great for methods that just return results,

but many methods have side effects

JU–32

Automated testing issues

 To test methods that do output, you have to capture the
output
 Itʼs possible to capture output, but itʼs an unpleasant

coding chore

 To test methods that change the state of the object, you have
to have code that checks the state
 Itʼs a good idea to have methods that test state invariants

JU–33

First steps toward solutions

 You can redefine System.out to use a different
PrintStream with
 System.setOut(PrintStream)

 You can “automate” GUI use by “faking” events

No tool?

 What do you do if there is no equivalent to JUnit for the
language or system in which you have to write test cases?

JU–34

JU–35

Minimal output testing – 1

 What to do if no tool exists?
 Use minimal output testing

 Works for any programming language
 Works for any system

 Successful test outputs only the briefest of messages
 test started

test ended

JU–36

Minimal output testing – 2

 Basic structure
 Test program is a sequence of if-statements with the

following structure
 Note use of msg_id to identify which test failed

 Rest of test program consists of set up and support
routines to simplify programming the condition and the
then-phrase

if expected_output ≠ actual output
then print_message(msg_id, …)
fi

