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Floating & Fixed Point Arithmetic

+ Two Types of arithmetic
— Floating Point Arithmetic
+ After each arithmetic operation numbers are normalized
» Used where precision and dynamic range are important
* Most algorithms are developed in FP
— Ease of coding
» More Cost (Area, Speed, Power)
— Fixed Point Arithmetic
+ Place of decimal is fixed
» Simpler HW, low power, less silicon
» Converting FP simulation to Fixed-point simulation is time
* consuming
» Multiplication doubles the number of bits
— NxN multiplier produces 2N bits

* The code is less readable, need to worry about overflow and scaling
issues
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System Design Flow

» The requirements and specifications of the application are captured
» The algorithms are then developed in double precision floating point

format

— Matlab or C/C++

» A signal processing system general consists of hybrid target

technologies

— DSPs, FPGAs, ASICs

* For mapping application developed in double precision is partitioned

into

— hardware & software

» Most of signal processing applications are mapped on Fixed-point
Digital Signal Processors or HW in ASICs or FPGAs

* The HW and SW components of the application are converted into
Fixed Point format for this mapping
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Requirements & Specifications

*Gathering R&S is
the first step of the
system design

*System
components and
algorithms are then
selected that meet
the requirements

*Example R&S of a
UHF Radio are
shown

Characteristics | Specifications
Output Power 2W

Spurious Emission | <60 dB
Harmonic >55 dB

Suppression

Frequency Stability

2ppm or better

Reliability >10,000 hours MTBF
<30 min MTTR
Handheld 12V DC nickel metal

hybrid, nickel cadmium
or lithium-ion battery
pack
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R&S of a UHF Radio (cont)

Characteristics Specifications

Frequency Range 420 MHz to 512 MHz

Data rate Up to 512 kbps multi-channel non-line of sight

Channel Multi-path with 15 ps delay spread and 220 km/h
relative speed between transmitter and receiver

Modulation OFDM supporting BPSK, QPSK and QAM

FEC Turbo codes, convolution, Reed—Solomon

Frequency hopping > 600 hops/s, frequency hopping on full hopping
band

Waveforms Radio works as SDR and should be capable of
accepting additional waveforms
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Algorithm Development and
Mapping

+ The R&S related to digital design are forwarded to
algorithm developers and system designers

+ Algorithms are coded in behavioral modeling tools like
Matlab

+ The Matlab code is then translated into a high level
language, for example, C/C++
+ System is designed based on R&S

» System usually consists of hybrid technologies consisting of ASICs,
DSPs, GPP, and FPGAs

» Partitioning of the application into HW/SW parts is
performed

» The SW is then developed for the SW part and
architectures are designed and implemented for the HW
parts

* Integration and testing is performed throughout the
design cycle
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Guidelines for Matlab Coding

+ Signal processing applications are mostly developed in
Matlab

» As the Matlab code is to be mapped in HW and SW so
adhering to coding guidelines is critical
— The code must be designed to work for processing of data in
chunks
— The code should be structured in distinct components

+ Well defined interfaces in terms of input and output arguments and
internal data storages

— All variables and constants should be defined in data structures
+ User defined configurations in one structure
+ System design constants in another structure
* Internal states for each block in another structure

— Initialization in the start of simulation
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Processing in Chunks

% BPSK = 1, QPSK = 2, 8PSK = 3, 16QAM = 4

% All-user defined parameters are set in structure USER PARAMS
USER_PARAMS .MOD_SCH = 2; %select QPSK for current simulatibn
USER_PARAMS.CHUNK_SZ = 256; %set buffer size

USER_PARAMS _.NO_CHUNKS = 100;% set no of chunks for simulatjion

% generate raw data for simulation

(raw_data = randint(l, USER_PARAMS.NO_CHUNKS*USER_PARAMS.CHUNK_SZ))
% Initialize user defined, system defined parameters and states
[PARAMS = MOD_Params_ Init(USER_PARAMS) ;

STATES = MOD_States_Init(PARAMS);
mod_out = [];

% nge_should be structured to process data on chunk-by-chunk
asis

for iter = 0:USER_PARAMS_NO_CHUNKS-1
in_data = raw_data
(iter*USER_PARAMS.CHUNK_SZ+1:USER_PARAMS.CHUNK_SZ*(iter+41));
[out_sig,STATES]= Modulator(in_data,PARAMS,STATES);
mod_out = [mod_out out_sig];

end
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Fixed Point vs. Floating Point HW

+ Algorithms are developed in floating point format
using tools like Matlab

 Floating point processors and HW are expensive

* Fixed-point processors and HW are used in
embedded systems

+ After algorithms are designed and tested then
they are converted into fixed-point
implementation

* The algorithms are ported on Fixed-point
processor or application specific hardware
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Digital Signal Processors

Digital Signal

Processors

Floating Fixed Point
Point DSP DSP
2.}

Can be 16, 24 or 32-bit
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Number Representation

 In a digital design fixed or floating point numbers
are represented in binary format

» Types of Representation
— one’s complement
— sign magnitude
— canonic sign digit (CSD)
— two’s complement

* In digital system design for fixed point
implementation the canonic sign digit (CSD),
and two’s complement are normally used
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2’'s Complement

« MSB is the sign bit (has a negative weight)
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Floating Point Format

* Floating point arithmetic is appropriate for high precision
applications

* Applications that deals with number with wider dynamic range
+ Afloating point number is represented as

X =(-1)° x1xm x 267D

s represents sign of the number

m is a fraction number >1 and < 2

— e is a biased exponent, always positive

— The bias b is subtracted to get the actual exponent
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IEEE 754 FP Format (single

precision)
S e m
/
< %/—/
Sign 8 bit
0=+ True exponent=e-b 23 bit
1=- Bias is 127 Mantissa is normalized (MSB=1). There is an

implied 1 to make it >1 and <2

X = (=1)° x1.m x 28717
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IEEE 754 FP Format

SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM
If E=255 and M is nonzero, then V=NaN ("Not a number")

If E=255 and M is zero and S is 1, then V=- ©

If E=255 and M is zero and S is 0, then V= o0

If 0<E<255 then V=(-1)S * 2E-127) * (1. M) where "1.M" is
intended to represent the binary number created by prefixing
M with an implicit leading 1 and a binary point.

If E=0 and M is nonzero, then V=(-1)**S * 2 ** (-126) * (0.M)
These are "unnormalized" values.

If E=0 and M is zero and S is 1, then V=-0
If E=0 and M is zero and S is 0, then V=0
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Examples

0 00000000 00000000000000000000000 =0
1 00000000 00000000000000000000000 = -0

011111111 00000000000000000000000 = Infinity
111111111 00000000000000000000000 = -Infinity

011111111 00000100000000000000000 = NaN
111111111 00100010001001010101010 = NaN

0 10000000 00000000000000000000000 = +1 * 2**(128-127) * 1.0 = 2

0 10000001 10100000000000000000000 = +1 * 2**(129-127) * 1.101 = 6.5
110000001 10100000000000000000000 = -1 * 2**(129-127) * 1.101 =-6.5
0 00000001 00000000000000000000000 = +1 * 2**(1-127) * 1.0 = 2**(-126)
0 00000000 10000000000000000000000 = +1 * 2**(-126) * 0.1 = 2**(-127)

0 00000000 00000000000000000000001 = +1 * 2**(-126) *
0.00000000000000000000001 = 2**(-149) (Smallest positive value)
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IEEE 754 Double Precision

64 bit number

1 bit for sign

11 bits for exponent
52 bits for mantissa
Bias is 1023
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FP Addition

S0: Append the implied 1 of the mantissa

S1: Shift the mantissa from SO with smaller exponent es

to the right by e, — e, where el is the larger of the two

exponents

S2: For negative operand take two’s complement and

then add the two mantissas.

— If the result is negative, again takes two’s complement of the
result for storing in IEEE format

S3: Normalize the sum back to IEEE format by adjusting

the mantissa and appropriately changing the value of the

exponent e,

S4: Round or truncate the resultant mantissa to fit in

IEEE format

10
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FP Addition -- Example

» Add these 2 numbers (e=4, m=5, bias=7)
0_1010_ = 2107% 1.00101=1001.01=9.25
0_1001_ = 297x 1.00101=1.00101=4.625
Align 1.00101x23=> 1.00101 x23
1.00101 x22 => 0.100101 x23
1.101111x23 =1.734375 x 8=13.875
In FP format 0_1010_ = 2107 x1,7185=13.75
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FP Multiplication

« SO: Add the two exponents e1 and e2 and
subtract the bias once

« S1. Multiply the mantissas as unsigned
numbers to get the product, and XOR the
two sign bits to get the sign of the product

« S2: Normalize the product if required
» S3: Round or truncate the mantissa

11
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Qn.m Format for Fixed-Point
Arithmetic

* Qn.m format is a fixed positional number system
for representing floating point numbers

* A Qn.m format binary number assumes n bits to
the left and m bits to the right of the binary point

211 20 ' 20 2s D D 2 el s
LT = —
Sign Bit T
Fraction Bits Fraction Bits
Q2.8 Format
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Example

21 20 . 2-1 22 2-3 24 2-5 2-6 27 2-8

01 11010000

LN
1+1/2Y+1/22 + 1/24 = 1.8125

The range of a Q2.8 is -2 (10_000_000) to
+1.99609375 (01_1111_1111)

In Qn.m n determines the range of the integer, while m
determines the precision of the fractional part

12
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Fixed Point DSPs

Commercially available off the shelf processors usually
have16 bits to represent a number

In C, a programmer can define 8, 16 or 32 bit numbers
as char, short and int/long respectively

In case a variable requires different precision than what
can be defined in C, the number is defined in higher
precision

For example an 18-bit number should be defined as a
32-bits integer

High precision arithmetic is performed using low
precision arithmetic operations

— 32-bit addition requires two 16-bit addition

— 32-bit multiplication requires four 16-bit multiplications
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FP to Fixed Point Comversion

Start wit the algorithm (FP)
Estimate the range
Determine n

The fractional part m requires detailed
analysis of signal to quantization noise

13
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| R&S |
I

Floating Point
algorithm

l

‘ Range estimation ‘

!
SQNR analysis for
optimal fractional part
determination

l

Fixed point
algorithm

|
v

‘ HW-SW implementation ‘

l

‘ Target system ‘
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Addition in Q Format

 Adding two numbers Qn,.m, and Qn,.m,
results in Qn.m where

* N=max(n,,n,)+1, m=max(m,,m,)

* Note that the decimal point does not exist

in H/W, the designer must align the two
number properly

14
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Multiplication in Q Format

» Unsigned by unsigned

« Straightforward shift and add, no sign
extension in general Q(n,+n,).(m,+m,)

1101=11.01inQ2.2=3.25
1011=10.11inQ2.2=2.75
1101
1101
0000‘
1101 | |
1000111 1=1000.1111 in Q4.4 format = 8.9375
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Multiplication in Q Format

 Signed by Unsigned

) 1101=11.01in Q2.2 =-0.75 (signed)
Sign extended ) )
number 0101=01.01in Q2.2 =1.25 (unsigned

11111101
0000000
111101
oooool

1 11110001=1111.0001in Q4.4 format =-0.9375

15
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Multiplication in Q Format

 Signed by Unsigned

1101=11.01in Q2.2 =-0.75 (signed)
1101=01.01in Q2.2 =3.25 (unsigned

11111101

0000000

111101

11101

10 11011001=1101.1001in Q4.4 format =

Take 2’s complement 0010.0111 =-2.4375
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Multiplication in Q Format

« Unsigned by Signed

1001=11.01in Q2.2 = 2.25 (unsigned)
1101=01.01in Q2.2 =-0.75 (signed)
00001001

The 2’s complement of the
0000000 multiplicand 01001=10111
001001
10111 .

1110010 1v= 1110.0101 in Q4.4 format take 2’s
complement it become 0001.1011 =-1.6875

16
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Multiplication in Q Format

 Signed by Signed

1101=11.01in Q2.2 = -0.75 (signed)
1101=1.101in Q1.3 = -0.375 (signed)
11111101

0000000
111101
00011

v v

10 00001001=00.01001in Q2.5 format = 0.28125

The 2’s complement
of 11.01 since we
are multiplying it by
the sign bit

Note that there is an extra sign bit so we need 2.5 not 3.5 format
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