Verilog Review and Fixed Point
Arithmetics

YORK UNIVERSITY

Overview

* Floating and Fixed Point Arithmetic

» System Design Flow
— Requirements and Specifications (R&S)
— Algorithmic Development in Matlab and Coding Guidelines

+ 2's Complement Arithmetic

* Floating Point Format

* Qn.m format for Fixed Point Arithmetic

+ Addition, Multiplication and Scaling in Qn.m

» LTI systems and implementation in Qn.m format

YORK UNIVERSITY |

Floating & Fixed Point Arithmetic

+ Two Types of arithmetic
— Floating Point Arithmetic
+ After each arithmetic operation numbers are normalized
» Used where precision and dynamic range are important
* Most algorithms are developed in FP
— Ease of coding
» More Cost (Area, Speed, Power)
— Fixed Point Arithmetic
+ Place of decimal is fixed
» Simpler HW, low power, less silicon
» Converting FP simulation to Fixed-point simulation is time
* consuming
» Multiplication doubles the number of bits
— NxN multiplier produces 2N bits

* The code is less readable, need to worry about overflow and scaling
issues

YORK_UNIVERSITY |

System Design Flow and Fixed

Requil " Algorithm

~ Floating Point

-~ SWorHwW
FE— s

Fixed Point

Conversion

Eplementaiion MRS UL LI RTLVeriog | Functional
SW S+ —

l

YORK UNIVERSITY

System Design Flow

» The requirements and specifications of the application are captured
» The algorithms are then developed in double precision floating point

format

— Matlab or C/C++

» A signal processing system general consists of hybrid target

technologies

— DSPs, FPGAs, ASICs

* For mapping application developed in double precision is partitioned

into

— hardware & software

» Most of signal processing applications are mapped on Fixed-point
Digital Signal Processors or HW in ASICs or FPGAs

* The HW and SW components of the application are converted into
Fixed Point format for this mapping

YORK UNIVERSITY

!

Requirements & Specifications

*Gathering R&S is
the first step of the
system design

*System
components and
algorithms are then
selected that meet
the requirements

*Example R&S of a
UHF Radio are
shown

Characteristics | Specifications
Output Power 2W

Spurious Emission | <60 dB
Harmonic >55 dB

Suppression

Frequency Stability

2ppm or better

Reliability >10,000 hours MTBF
<30 min MTTR
Handheld 12V DC nickel metal

hybrid, nickel cadmium
or lithium-ion battery
pack

YORK UNIVERSITY |

R&S of a UHF Radio (cont)

Characteristics Specifications

Frequency Range 420 MHz to 512 MHz

Data rate Up to 512 kbps multi-channel non-line of sight

Channel Multi-path with 15 ps delay spread and 220 km/h
relative speed between transmitter and receiver

Modulation OFDM supporting BPSK, QPSK and QAM

FEC Turbo codes, convolution, Reed—Solomon

Frequency hopping > 600 hops/s, frequency hopping on full hopping
band

Waveforms Radio works as SDR and should be capable of
accepting additional waveforms

YORK_UNIVERSITY |

Algorithm Development and
Mapping

+ The R&S related to digital design are forwarded to
algorithm developers and system designers

+ Algorithms are coded in behavioral modeling tools like
Matlab

+ The Matlab code is then translated into a high level
language, for example, C/C++
+ System is designed based on R&S

» System usually consists of hybrid technologies consisting of ASICs,
DSPs, GPP, and FPGAs

» Partitioning of the application into HW/SW parts is
performed

» The SW is then developed for the SW part and
architectures are designed and implemented for the HW
parts

* Integration and testing is performed throughout the
design cycle

YORK UNIVERSITY |

Guidelines for Matlab Coding

+ Signal processing applications are mostly developed in
Matlab

» As the Matlab code is to be mapped in HW and SW so
adhering to coding guidelines is critical
— The code must be designed to work for processing of data in
chunks
— The code should be structured in distinct components

+ Well defined interfaces in terms of input and output arguments and
internal data storages

— All variables and constants should be defined in data structures
+ User defined configurations in one structure
+ System design constants in another structure
* Internal states for each block in another structure

— Initialization in the start of simulation

YORK_UNIVERSITY |

Processing in Chunks

% BPSK = 1, QPSK = 2, 8PSK = 3, 16QAM = 4

% All-user defined parameters are set in structure USER PARAMS
USER_PARAMS .MOD_SCH = 2; %select QPSK for current simulatibn
USER_PARAMS.CHUNK_SZ = 256; %set buffer size

USER_PARAMS _.NO_CHUNKS = 100;% set no of chunks for simulatjion

% generate raw data for simulation

(raw_data = randint(l, USER_PARAMS.NO_CHUNKS*USER_PARAMS.CHUNK_SZ))
% Initialize user defined, system defined parameters and states
[PARAMS = MOD_Params_ Init(USER_PARAMS) ;

STATES = MOD_States_Init(PARAMS);
mod_out = [];

% nge_should be structured to process data on chunk-by-chunk
asis

for iter = 0:USER_PARAMS_NO_CHUNKS-1
in_data = raw_data
(iter*USER_PARAMS.CHUNK_SZ+1:USER_PARAMS.CHUNK_SZ*(iter+41));
[out_sig,STATES]= Modulator(in_data,PARAMS,STATES);
mod_out = [mod_out out_sig];

end

YORK UNIVERSITY |

Fixed Point vs. Floating Point HW

+ Algorithms are developed in floating point format
using tools like Matlab

 Floating point processors and HW are expensive

* Fixed-point processors and HW are used in
embedded systems

+ After algorithms are designed and tested then
they are converted into fixed-point
implementation

* The algorithms are ported on Fixed-point
processor or application specific hardware

YORK_UNIVERSITY |

Digital Signal Processors

Digital Signal

Processors

Floating Fixed Point
Point DSP DSP
2.}

Can be 16, 24 or 32-bit

YORK UNIVERSITY |

Number Representation

 In a digital design fixed or floating point numbers
are represented in binary format

» Types of Representation
— one’s complement
— sign magnitude
— canonic sign digit (CSD)
— two’s complement

* In digital system design for fixed point
implementation the canonic sign digit (CSD),
and two’s complement are normally used

YORK_UNIVERSITY |

2’'s Complement

« MSB is the sign bit (has a negative weight)

YORK UNIVERSITY |

Floating Point Format

* Floating point arithmetic is appropriate for high precision
applications

* Applications that deals with number with wider dynamic range
+ Afloating point number is represented as

X =(-1)° x1xm x 267D

s represents sign of the number

m is a fraction number >1 and < 2

— e is a biased exponent, always positive

— The bias b is subtracted to get the actual exponent

YORK_UNIVERSITY |

IEEE 754 FP Format (single

precision)
S e m
/
< %/—/
Sign 8 bit
0=+ True exponent=e-b 23 bit
1=- Bias is 127 Mantissa is normalized (MSB=1). There is an

implied 1 to make it >1 and <2

X = (=1)° x1.m x 28717

YORK UNIVERSITY |

IEEE 754 FP Format

SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM
If E=255 and M is nonzero, then V=NaN ("Not a number")

If E=255 and M is zero and S is 1, then V=- ©

If E=255 and M is zero and S is 0, then V= o0

If 0<E<255 then V=(-1)S * 2E-127) * (1. M) where "1.M" is
intended to represent the binary number created by prefixing
M with an implicit leading 1 and a binary point.

If E=0 and M is nonzero, then V=(-1)**S * 2 ** (-126) * (0.M)
These are "unnormalized" values.

If E=0 and M is zero and S is 1, then V=-0
If E=0 and M is zero and S is 0, then V=0

YORK UNIVERSITY

Examples

0 00000000 00000000000000000000000 =0
1 00000000 00000000000000000000000 = -0

011111111 00000000000000000000000 = Infinity
111111111 00000000000000000000000 = -Infinity

011111111 00000100000000000000000 = NaN
111111111 00100010001001010101010 = NaN

0 10000000 00000000000000000000000 = +1 * 2**(128-127) * 1.0 = 2

0 10000001 10100000000000000000000 = +1 * 2**(129-127) * 1.101 = 6.5
110000001 10100000000000000000000 = -1 * 2**(129-127) * 1.101 =-6.5
0 00000001 00000000000000000000000 = +1 * 2**(1-127) * 1.0 = 2**(-126)
0 00000000 10000000000000000000000 = +1 * 2**(-126) * 0.1 = 2**(-127)

0 00000000 00000000000000000000001 = +1 * 2**(-126) *
0.00000000000000000000001 = 2**(-149) (Smallest positive value)

YORK UNIVERSITY |

IEEE 754 Double Precision

64 bit number

1 bit for sign

11 bits for exponent
52 bits for mantissa
Bias is 1023

YORK UNIVERSITY

FP Addition

S0: Append the implied 1 of the mantissa

S1: Shift the mantissa from SO with smaller exponent es

to the right by e, — e, where el is the larger of the two

exponents

S2: For negative operand take two’s complement and

then add the two mantissas.

— If the result is negative, again takes two’s complement of the
result for storing in IEEE format

S3: Normalize the sum back to IEEE format by adjusting

the mantissa and appropriately changing the value of the

exponent e,

S4: Round or truncate the resultant mantissa to fit in

IEEE format

10

YORK UNIVERSITY |

FP Addition -- Example

» Add these 2 numbers (e=4, m=5, bias=7)
0_1010_ = 2107% 1.00101=1001.01=9.25
0_1001_ = 297x 1.00101=1.00101=4.625
Align 1.00101x23=> 1.00101 x23
1.00101 x22 => 0.100101 x23
1.101111x23 =1.734375 x 8=13.875
In FP format 0_1010_ = 2107 x1,7185=13.75

YORK_UNIVERSITY |

FP Multiplication

« SO: Add the two exponents e1 and e2 and
subtract the bias once

« S1. Multiply the mantissas as unsigned
numbers to get the product, and XOR the
two sign bits to get the sign of the product

« S2: Normalize the product if required
» S3: Round or truncate the mantissa

11

YORK UNIVERSITY |

Qn.m Format for Fixed-Point
Arithmetic

* Qn.m format is a fixed positional number system
for representing floating point numbers

* A Qn.m format binary number assumes n bits to
the left and m bits to the right of the binary point

211 20 ' 20 2s D D 2 el s
LT = —
Sign Bit T
Fraction Bits Fraction Bits
Q2.8 Format

YORK UNIVERSITY

Example

21 20 . 2-1 22 2-3 24 2-5 2-6 27 2-8

01 11010000

LN
1+1/2Y+1/22 + 1/24 = 1.8125

The range of a Q2.8 is -2 (10_000_000) to
+1.99609375 (01_1111_1111)

In Qn.m n determines the range of the integer, while m
determines the precision of the fractional part

12

YORK UNIVERSITY |

Fixed Point DSPs

Commercially available off the shelf processors usually
have16 bits to represent a number

In C, a programmer can define 8, 16 or 32 bit numbers
as char, short and int/long respectively

In case a variable requires different precision than what
can be defined in C, the number is defined in higher
precision

For example an 18-bit number should be defined as a
32-bits integer

High precision arithmetic is performed using low
precision arithmetic operations

— 32-bit addition requires two 16-bit addition

— 32-bit multiplication requires four 16-bit multiplications

YORK_UNIVERSITY |

FP to Fixed Point Comversion

Start wit the algorithm (FP)
Estimate the range
Determine n

The fractional part m requires detailed
analysis of signal to quantization noise

13

YORK UNIVERSITY

| R&S |
I

Floating Point
algorithm

l

‘ Range estimation ‘

!
SQNR analysis for
optimal fractional part
determination

l

Fixed point
algorithm

|
v

‘ HW-SW implementation ‘

l

‘ Target system ‘

YORK_UNIVERSITY |

Addition in Q Format

 Adding two numbers Qn,.m, and Qn,.m,
results in Qn.m where

* N=max(n,,n,)+1, m=max(m,,m,)

* Note that the decimal point does not exist

in H/W, the designer must align the two
number properly

14

YORK UNIVERSITY |

Multiplication in Q Format

» Unsigned by unsigned

« Straightforward shift and add, no sign
extension in general Q(n,+n,).(m,+m,)

1101=11.01inQ2.2=3.25
1011=10.11inQ2.2=2.75
1101
1101
0000‘
1101 | |
1000111 1=1000.1111 in Q4.4 format = 8.9375

YORK_UNIVERSITY |

Multiplication in Q Format

 Signed by Unsigned

) 1101=11.01in Q2.2 =-0.75 (signed)
Sign extended))
number 0101=01.01in Q2.2 =1.25 (unsigned

11111101
0000000
111101
oooool

1 11110001=1111.0001in Q4.4 format =-0.9375

15

YORK UNIVERSITY |

Multiplication in Q Format

 Signed by Unsigned

1101=11.01in Q2.2 =-0.75 (signed)
1101=01.01in Q2.2 =3.25 (unsigned

11111101

0000000

111101

11101

10 11011001=1101.1001in Q4.4 format =

Take 2’s complement 0010.0111 =-2.4375

YORK_UNIVERSITY |

Multiplication in Q Format

« Unsigned by Signed

1001=11.01in Q2.2 = 2.25 (unsigned)
1101=01.01in Q2.2 =-0.75 (signed)
00001001

The 2’s complement of the
0000000 multiplicand 01001=10111
001001
10111 .

1110010 1v= 1110.0101 in Q4.4 format take 2’s
complement it become 0001.1011 =-1.6875

16

YORK UNIVERSITY

!

Multiplication in Q Format

 Signed by Signed

1101=11.01in Q2.2 = -0.75 (signed)
1101=1.101in Q1.3 = -0.375 (signed)
11111101

0000000
111101
00011

v v

10 00001001=00.01001in Q2.5 format = 0.28125

The 2’s complement
of 11.01 since we
are multiplying it by
the sign bit

Note that there is an extra sign bit so we need 2.5 not 3.5 format

YORK UNIVERSITY

17

