
1

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 1

CSE 3402: Intro to Artificial Intelligence  
Uninformed Search II

● Required Readings: Chapter 3, Sec. 1-4.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 2

 {Arad},

 {Zerind, Timisoara, Sibiu},
 {Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea },
 {Zerind, Timisoara, Arad, Oradea, Sibiu, Bucharest, RimnicuVilcea },

 Solution: Arad -> Sibiu -> Fagaras -> Bucharest
 Cost: 140+99+211 = 450

2

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 3

 {Arad},

 {Zerind, Timisoara, Sibiu},
 {Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea},
 {Zerind, Timisoara, Arad, Oradea, Sibiu, Pitesi, Craiova<via

RimnicuVilcea>},
 {Zerind, Timisoara, Arad, Oradea, Sibiu, Craiova<via Pitesi>, Bucharest,

Craiova<via RimnicuVilcea>},

§  Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti ->
 Bucharest

 Cost: 140+80+97+101 = 418

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 4

{Arad<>},
{Zerind<Arad>, Timisoara<Arad>, Sibiu<Arad>},
{Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>,

Fagaras<Sibiu;Arad>, Arad<Sibiu;Arad>, RimnicuVilcea<Sibiu;Arad>},
{Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>,

Fagaras<Sibiu;Arad>, Zerind<Arad;Sibiu;Arad>,
Timisoara<Arad;Sibiu;Arad>, Sibiu<Arad;Sibiu;Arad>,
RimnicuVilcea<Sibiu;Arad>},

No solution found, search does not terminate because of cycles!

3

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 5

Selection Rule.

● The example shows that order states are
selected from the frontier has a critical effect
on the operation of the search.
■ Whether or not a solution is found
■ The cost of the solution found.
■ The time and space required by the search.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 6

Critical Properties of Search.

● Completeness: will the search always find a
solution of a solution exists?

● Optimality: will the search always find the least
cost solution? (when actions have costs)

● Time complexity: what is the maximum
number of nodes than can be expanded or
generated?

● Space complexity: what is the maximum
number of nodes that have to be stored in
memory?

4

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 7

Uninformed Search Strategies

● These are strategies that adopt a fixed rule for
selecting the next state to be expanded.

● The rule is always the same whatever the
search problem being solved.

● These strategies do not take into account any
domain specific information about the
particular search problem.

● Popular uninformed search techniques:
■ Breadth-First, Uniform-Cost, Depth-First, Depth-

Limited, and Iterative-Deepening search.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 8

Selecting vs. Sorting
● A simple equivalence we will exploit
■ Order the elements on the frontier.
■ Always select the first element.

● Any selection rule can be achieved by
employing an appropriate ordering of the
frontier set.

5

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 9

Breadth First.

● Place the successors of the current state at the
end of the frontier.

● Example:
■  let the states be the positive integers {0,1,2,…}
■  let each state n have as successors n+1 and n+2
● E.g. S(1) = {2, 3}; S(10) = {11, 12}

■ Start state 0
■ Goal state 5

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 10

Breadth First Example.
{0}
{1,2}
{2,2,3}
{2,3,3,4}
{3,3,4,3,4}
{3,4,3,4,4,5}
…

6

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 11

Breadth First Properties

● Measuring time and space complexity.
■ let b be the maximum number of successors

of any state.
■ let d be the number of actions in the

shortest solution.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 12

Breadth First Properties

● Completeness?
■ The length of the path from the initial state to the

expanded state must increase monotonically.
● we replace each expanded state with states on

longer paths.
● All shorter paths are expanded prior before any

longer path.
■ Hence, eventually we must examine all paths of

length d, and thus find the shortest solution.

7

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 13

Breadth First Properties

● Time Complexity?

■ 1 + b + b2 + b3 + … + bd-1 + bd + b(bd – 1) = O(bd+1)

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 14

Breadth First Properties

● Space Complexity?
■ O(bd+1): If goal node is last node at level d, all of the

successors of the other nodes will be on the frontier
when the goal node is expanded b(bd – 1)

8

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 15

Breadth First Properties

● Optimality?
■ Will find shortest length solution
● least cost solution?

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 16

Breadth First Properties

● Space complexity is a real problem.
■ E.g., let b = 10, and say 1000 nodes can be

expanded per second and each node requires 100
bytes of storage:
Depth Nodes Time Memory

1 1 1 millisec. 100 bytes

6 106 18 mins. 111 MB

8 108 31 hrs. 11 GB

● Run out of space long before we run out of
time in most applications.

9

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 17

Uniform Cost Search.

● Keep the frontier sorted in increasing cost of
the path to a node.

● Always expand the least cost node.
● Identical to Breadth First if each transition has

the same cost.

● Example:
■  let the states be the positive integers {0,1,2,…}
■  let each state n have as successors n+1 and n+2
■ Say that the n+1 action has cost 2, while the n+2

action has cost 3.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 18

Uniform Cost Search.
{0[0]}
{1[2],2[3]}
{2[3],2[4],3[5]}
{2[4],3[5],3[5],4[6]}
{3[5],3[5],4[6],3[6],4[7]}
…

10

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 19

Uniform-Cost Search

● Completeness?
■  If each transition has costs ≥ ε > 0.
■ The previous argument used for breadth first search

holds: the cost of the expanded state must increase
monotonically.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 20

Uniform-Cost Search

● Time and Space Complexity?
■ O(bC*/ε) where C* is the cost of the optimal solution.

● Difficulty is that there may be many long paths
with cost ≤ C*; Uniform-cost search must explore
them all.

11

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 21

Uniform-Cost Search

● Optimality?
■ Finds optimal solution if each transition has cost ≥ ε

> 0.
● Explores paths in the search space in increasing

order of cost. So must find minimum cost path to a
goal before finding any higher costs paths.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 22

Uniform-Cost Search. Proof of
Optimality.

1.  Claim: Let c(n) be the cost of the path to node
n. If n2 is expanded after n1 then  
c(n1) ≤ c(n2).

Proof:
■  If n2 was on the frontier when n1 was expanded, in which case

c(n2) ≥ c(n1) else n1 would not have been selected for
expansion.

■  If n2 was added to the frontier when n1 was expanded, in which
case c(n2) ≥ c(n1) since the path to n2 extends the path to n1.

■  If n2 is a successor of a node n3 that was on the frontier or
added when n1 was expanded, then c(n2) > c(n3) and c(n3) ≥ c
(n1) by the above arguments.

12

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 23

Uniform-Cost Search. Proof of
Optimality.

2.  Claim: When n is expanded every path with cost
strictly less than c(n) has already been expanded (i.e.,
every node on it has been expanded).

Proof:
■  Let <Start, n0, n1, …, nk> be a path with cost less than c(n). Let

ni be the last node on this path that has been expanded. <Start,
n0, n1, ni-1, ni, ni+1, …, nk>.

■  ni+1 must be on the frontier, also c(ni+1) < c(n) since the cost
of the entire path to nk is < c(n).

■  But then uniform-cost would have expanded ni+1 not n!
■  So every node on this path must already be expanded, i.e. this

path has already been expanded. QED

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 24

Uniform-Cost Search. Proof of
Optimality.

3.  The first time uniform-cost expands a state,
it has found the minimal cost path to it (it
might later find other paths to the same
state).

Proof:
■ No cheaper path exists, else that path would have

been expanded before.
■ No cheaper path will be discovered later, as all those

paths must be at least as expensive.
■ So, when a goal state is expanded, the path to it

must be optimal.

13

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 25

Depth First Search

● Place the successors of the current state at
the front of the frontier.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 26

Depth First Search Example

(applied to the example of Breadth First
search)

{0}
{1,2}
{2,3,2}
{3,4,3,2}
{4,5,4,3,2}
{5,6,5,4,3,2}
…

14

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 27

Depth First Properties

● Completeness?
■  Infinite paths?

■ Prune paths with duplicate states?

● Optimality?

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 28

Depth First Properties

● Time Complexity?
■ O(bm) where m is the length of the longest path in

the state space.

■ Very bad if m is much larger than d, but if there are
many solution paths it can be much faster than
breadth first.

15

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 29

Depth First Backtrack Points
• At each step, all nodes in the frontier
(except the head) are backtrack points (see
example and draw the tree for state-space).

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 30

Depth First Properties

●  Space Complexity?
■ O(bm), linear space!

● Only explore a single path at a time.
● The frontier only contains the deepest states on
the current path along with the backtrack points.

16

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 31

Depth Limited Search

● Breadth first has computational, especially, space
problems. Depth first can run off down a very long (or
infinite) path.

● Depth limited search.
■  Perform depth first search but only to a pre-specified depth

limit L.
■  No node on a path that is more than L steps from the initial

state is placed on the Frontier.
■  We “truncate” the search by looking only at paths of length L or

less.
● Now infinite length paths are not a problem.
● But will only find a solution if a solution of length ≤ L

exists.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 32

Depth Limited Search

DLS(Frontier, Sucessors, Goal?)
 If Frontier is empty return failure

Curr = select state from Frontier

If(Goal?(Curr)) return Curr.

If Depth(Curr) < L

 Frontier’ = (Frontier – {Curr}) U Successors(Curr)

Else

 Frontier’ = Frontier – {Curr}
 CutOffOccured = TRUE.

return DLS(Frontier’, Successors, Goal?)

17

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 33

Iterative Deepening Search.

● Take the idea of depth limited search one step
further.

● Starting at depth limit L = 0, we iteratively
increase the depth limit, performing a depth
limited search for each depth limit.

● Stop if no solution is found, or if the depth
limited search failed without cutting off any
nodes because of the depth limit.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 34

Iterative Deepening Search Example

18

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 35

Iterative Deepening Search Properties

● Completeness?
■ Yes, if solution of length d exists, will the search will

find it when L = d.
● Time Complexity?

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 36

Iterative Deepening Search Properties

● Time Complexity
■ (d+1)b0 + db1 + (d-1)b2 + … + bd = O(bd)
■ E.g. b=4, d=10

● (11)*40 + 10*41 + 9*42 + … + 2*49 = 815,555
● 410 = 1,048,576
● Most nodes lie on bottom layer.
● In fact IDS can be more efficient than breadth
first search: nodes at limit are not expanded. BFS
must expand all nodes until it expands a goal
node.

19

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 37

Iterative Deepening Search Properties

● Space Complexity
■  O(bd) Still linear!

● Optimal?
■  Will find shortest length solution which is optimal if costs are

uniform.
■  If costs are not uniform, we can use a “cost” bound instead.
●  Only expand paths of cost less than the cost bound.
●  Keep track of the minimum cost unexpanded path in each

depth first iteration, increase the cost bound to this on the
next iteration.

●  This can be very expensive. Need as many iterations of the
search as there are distinct path costs.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 38

Iterative Deepening Search Properties
● Consider space with three paths of length 3,

but each action having a distinct cost.

20

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 39

Cycle Checking

● Path checking
■ Paths are stored on the frontier (this allows us to

output the solution path).
● If <S,n1,…,nk> is a path to node nk, and we expand

nk to obtain child c, we have
■ <S,n1,…,nk,c>

● As the path to “c”.
■ Path checking:
● Ensure that the state c is not equal to the state

reached by any ancestor of c along this path.

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 40

Path Checking Example

Arad Lugoj

Zerind

Oradea

Timisoara

Arad

Timisoara Mehadia

Arad

Zerind Sibiu

Arad Fagaras R. Vilcea

21

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 41

Path Checking Example

2

3 4

3

4 5

3

4 5

4

5 6

1 2

0

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 42

Cycle Checking

● Cycle Checking.
■ Keep track of all states previously expanded during

the search.
■ When we expand nk to obtain child c
● ensure that c is not equal to any previously

expanded state.
■ This is called cycle checking, or multiple path

checking.
■ Why can’t we utilize this technique with depth-first

search?
● If we use cycle checking in depth-first search what

happens to space complexity.

22

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 43

Cycle Checking Example

2

3 4

3

4 5

3

4 5

4

5 6

1 2

0

CSE 3402 Winter 2012 Yves Lesperance & Fahiem Bacchus 44

Cycle Checking
● High space complexity, only useful with

breadth first search.
● There is an additional issue when we are

looking for an optimal solution
■ With uniform-cost search, we still find an optimal

solution
● The first time uniform-cost expands a state it

has found the minimal cost path to it.
■ This means that the nodes rejected by cycle

checking can’t have better paths.
■ We will see later that we don’t always have this

property when we do heuristic search.

