Lists

York University
Department of Computer Science and Engineering
Overview

• Definition and representation of Lists in Prolog
 – Dot functor

• Examples of recursive definition of predicates
 – islist,
 – member, delete
 – append, multiple,
 – prefix, suffix, sublist

[ref.: Clocksin- Chap.3 and Nilsson- Chap. 7]
[also Prof. Gunnar Gotshalks’ slides]
Lists

• A list:
 – is an ordered sequence of elements that can have any length.
 – List notation in Prolog: [a, b, c, d, ...]
 – Either an empty list [] or it has a head X and a tail L represented as [X|L] where X is a list item and L is a list.

• The dot:
 – is a functor for representing lists with two arguments, the head and the tail of a list
 – A list of one element [a] is [a | []] implemented in Prolog as .(a, [])
 – [a, b] is .(a, .(b, []))

• Note [a, b, c] is not the same as [a, [b,c]]
[a, b, c] is .(a, .(b, .(c, [])))
[a, [b, c]] is .(a, L)
where L is [[b,c]] having [b,c] as its head and [] as tail
Examples

• Write the Prolog definition for being a list.

\[
\begin{align*}
\text{islist}([]) & . \\
\text{islist}([\text{Head} | \text{Tail}]) & : - \text{islist}(ext{Tail}).
\end{align*}
\]

• Write the Prolog definition for being a member of a list.

\[
\begin{align*}
\text{member}(X, [X|L]) & . \\
\text{member}(X, [Y|L]) & : - \text{member}(X,L).
\end{align*}
\]
Examples (cont.)

:- member(3, [2, 3, 4, 5]).
true

:- member(3, [2, [3, 4], 5]).
false

:- member(X, [1, 2]).
X = 1 ;
X = 2 ;
false

:- member(2, L).
L = [2 | _] ;
L=[__ , 2 | _];
...

Our definition does not consider members of members (nested lists)

Unlike other programming languages, inputs can be unknowns

Note the recursive definition of member
Recursive Definition

• Example:
 member(X, [X|L]). : boundary condition
 member(X, [Y|L]) :- member(X,L). : recursive case

• Note in a recursive definition, the problem must get smaller in each recursion to guarantee convergence
 member(X,L) is a smaller problem than member(X, [Y|L])

• Prolog does not need to remember Y, so we can use the anonymous variable _ instead:
 member(X, [_|L]) :- member(X,L).
Recursive Search

• Example:

 member(X, [X|L]).

 member(X, [Y|L]) :- member(X,L).

 :- member(X, [a,b,c]).

 X = a;
 X = b;
 X = c;
 false
Delete

• delete(X, L1, L2) is true if L2 is the result of deleting X from L1 (just once).

 – For example: delete(5, [1, 5, 4, 2], [1, 4, 2]).

\[
delete(X, [X|L], L).
delete(X, [Y|L], [Y|L1]) :- deelete(X, L, L1).
\]
Append

• Join two lists:
 Example: \texttt{append([1,2], [3,4], [1,2,3,4])}

\begin{align*}
\text{append([], L, L).} & \quad : \text{boundary condition} \\
\text{append([X|L1], L2, [X|L3]):} & \quad : \text{recursive case} \\
\text{append([X|L1], L2, [X|L3]):} & \quad : \text{a smaller problem}
\end{align*}

• Possible Queries:

 [Nilsson]
 \texttt{:- append([a, b], [c, d], [a, b, c, d]).} \\
 \texttt{true}

 \texttt{:- append([a, b], [c, d], X).} \\
 \texttt{X=[a, b, c, d]}

 or even
 \texttt{:- append(Y, Z, [a, b, c, d]).}
append([], X, X).
append([X|Y], Z, [X|W]) :-
 append(Y, Z, W).

:- append(Y, Z, [a, b, c, d]).

\[
\begin{align*}
Y &= [] & Z &= [a, b, c, d] \\
Y &= [a] & Z &= [b, c, d] \\
Y &= [a, b] & Z &= [c, d] \\
Y &= [a, b, c] & Z &= [d] \\
Y &= [a, b, c, d] & Z &= []
\end{align*}
\]
Prefix with append

- The list P is a prefix of L, if L can be obtained by appending P to another list.

- Write \texttt{prefix(P,L)} which is true if P is a prefix of L.

\begin{align*}
\texttt{prefix(P, L)} & \text{:- append(P, _, L).} \\
\text{Is } & \text{[] a prefix of L?}
\end{align*}
The List S is a suffix (or postfix) of L if L can be obtained by appending some other list with S.

Write suffix(S,L) which is true if S is a suffix of L

\[\text{suffix}(S,L):= \text{append}(_, S, L). \]

Exercise: Try writing prefix and suffix without using append.
More Examples with append

• sublist(S,L) is true if S is a sublist of L
 – in other words, S is the suffix of a prefix

– Using append(..):

 \[
 \text{sublist}(S,L) :\quad \text{append}(_ , S, \text{Left}) , \text{append}(\text{Left} , _ , \text{L}).
 \]
More Examples with append

• Re-writing `delete(X,L1,L2)` with `append(..)`:

```
delete(X, L, R):- append(L1,[X|L2],L), append(L1, L2, R).
```
Example: multiple occurrences in a list

- multiple(L) is true if L is a list with multiple occurrences of some element [Nilsson]:

 \[\text{multiple([Head|Tail])} :\]
 \(\text{member(Head, Tail).}\)

 \[\text{multiple([Head|Tail])} :\]
 \(\text{multiple(Tail).}\)

- Writing multiple(..) using append(..)

 \[\text{multiple(L)} :\]
 \(\text{append(L1, [X|L2], L), append(L3, [X|L4], L).}\)

What is missing in definition of multiple(..)? How can it be corrected?
Append is expensive!

\[
append([], L, L).
append([X|L1], L2, [X|L3]) :- append(L1, L2, L3).
\]

• The complexity of appending two lists, \(L_1\) and \(L_2\), is \(O(n)\) where \(n\) is the length of the first list.

• Consider \(\text{reverse}(L, R)\) defined as:

 \[
 \text{reverse}([], []). \\
 \text{reverse}([X|L], R) :- \text{reverse}(L, L1), append (L1, [X], R).
 \]

• Complexity of \(\text{reverse}(..)\) is \(O(n^2)\) where \(n\) is the length of \(L\).