Introduction & Review

York University

Department of Computer Science and Engineering

Overview

- Why this course?
- Programming Language Paradigms
- Brief review of Logic
 - Propositional logic
 - Predicate logic

- Ref:
 - R.W. Sebesta, Concepts of Programming languages-7th edition, Pearson Education, 2006.
 - G. Tourlakis, Mathematical Logic, John Wiley & Sons, 2008.
 - Prof. Stachniak's class notes

Why this course?

• From the undergraduate calendar:

This course covers <u>functional and logic programming</u>. Together with the students' <u>background on procedural and object-</u> <u>oriented programming</u>, the course allows them to <u>compare</u> the development of programs in these different types of languages.

- Reasons for studying concepts of programming languages [Sebesta]:
 - 1. Increased capacity to express ideas
 - 2. Improved background for choosing appropriate languages
 - 3. Increased ability to learn new languages
 - 4. Better understanding of the significance of implementation
 - 5. Overall advancement of computing

Programming Language Paradigms

- (1) Imperative programming
 - Semantics (what the program does) is state based;
 involves variables and assignments
 - Computation viewed as state transition process
 - Categories:
 - Procedural, e.g. C, Pascal, Turing
 - Visual, e.g. Visual Basic: code can be dragged & dropped
 - Object Oriented, e.g. Java
 - Other non-structured

Imperative: Of the nature of or expressing a command; commanding (dictionary.reference.com)

Programming Language Paradigms-cont.

- (2) Declarative Programming
 - Focus is on logic (WHAT) rather than control (HOW)
 - Categories:
 - Logic Programming: Computation is a reasoning process, e.g. Prolog
 - Functional Programming: Computation is the evaluation of a function, e.g. Lisp, Scheme, ...
 - Constrained Languages: Computation is viewed as constraint satisfaction problem, e.g. Prolog (R)

Declarative: Serving to declare, make known, or explain (dictionary.reference.com)

Ref.: Sebesta, R.W. Concepts of Programming Languages, 7th edition

Programming Language Paradigms-cont.

- Level of language
 - Low level
 - has a world view close to that of the computer
 - High level
 - has a world view closer to that of the specification (describing the problem to be solved, or the structure of the system to be presented)
- Evaluation Criteria:
 - Readability, Writability, Reliability, Cost
- Design and evaluation depend on the domain and the problem to be solved

PART I- LOGIC PROGRAMMING

Why Logic Programming?

- View of the world imposed by a language
 A programming language tends to impose a certain view of
 the world on its users. Logic Programming is based on
 Logic and reasoning.
- Semantics of the programming languages

 To program with the constructs of a language requires
 thinking in terms of the semantics of those constructs.
 Logic programming requires thinking in terms of facts and
 rules.

Logic Programming

- Based on *first order predicate logic*
- A programmer *describes* with formulas of predicate logic
- A *mechanical problem solver* makes inferences from these formulas

Propositional Logic (review)

- Alphabet
 - Variables, e.g. p, q, r, ..., p₁, ..., p', ...
 - Constants: T and \perp (or F)
 - Connectives: $\{\neg, \land, \lor, \rightarrow, \equiv\}$
 - or {~, &, #, ->, <-> in some books}
 - Brackets: (and)
- Well-formed-formula (wff)
 - All variables and constants are wffs.
 - If A and B are wffs, then the following are also wffs. $(\neg A), (A \land B), (A \lor B), (A \to B), (A \equiv B)$
 - Priority of connectives, and rules for removing brackets

Propositional Logic (cont.)

- Semantics and truth tables
 - true (1) and false (0)
 - State: possible assignment to variables
- Tautology
 - A formula A is a <u>tautology</u> if v(A)=1 (true) in all possible states
 - Example: $(p \lor \neg p)$
- Satisfiable / consistent
 - A formula A is <u>satisfiable</u> iff there is at least one state v where v(A)=1 (true). Examples: p, $(p \land q)$, $(p \rightarrow q)$
 - A set of formulae X is <u>satisfiable</u> (or <u>consistent</u>) iff there is at least one state v where for every formula A in X, v(A)=1. Example: $\{p, (p \land q), (p \rightarrow q)\}$

Propositional Logic (cont.)

- Unsatisfiable / inconsistent / contradiction
 - A formula A is unsatisfiable (or a contradiction) iff no state v exists where v(A)=1, in other words for all possible states v(A)=0 (false). Example: $(p \land \neg p)$
 - Note if A is a tautology, $(\neg A)$ is a contradiction.
 - A set of formulae is unsatisfiable (or inconsistent) iff for all possible states v at least one formula A in the set is false, i.e. v(A)=0. Example: $\{p, p \land q, p \rightarrow \neg q\}$

Predicate Logic (review)

- Alphabet
 - Alphabet of propositional logic
 - Object variables, e.g. x, y, z, ..., x₁, ..., x',
 - Object constants, e.g. a, b, c, ...
 - Object equality symbol =
 - Quantifier symbols \forall (and \exists)
 - and some functions & predicates
- Term
 - An object variable or constant, e.g. x, a
 - A function f of n arguments, where each argument is a term, e.g. $f(t_1, t_2, ...t_n)$ $t_1 \rightarrow$

Predicate Logic (cont.)

- Atomic formula
 - A Boolean variable or constant
 - The string t = s, where t and s are terms
 - A predicate \emptyset of n arguments where each argument is a term , e.g. $\emptyset(t_1, t_2, ..., t_n) \xrightarrow{t_1 \longrightarrow}$

$$t_n \xrightarrow{\phi} a \text{ formula}$$

 $t_n \xrightarrow{\phi} (true \text{ or false})$

- Well-formed formula
 - Any atomic formula
 - If A and B are wffs, then the following are also wffs.
 - $(\neg A), (A \land B), (A \lor B), (A \to B), (A \equiv B), ((\forall x)A), ((\exists x)A)$

Examples

- Numbers
 - Object constants: 1, 2, 3, ...
 - Functions: +, -, *, /, ...
 - Predicates: >, <, ...</p>
 - Examples of wffs: $>(x, y) \rightarrow >(+(x,1), y)$ Or the familiar notation: $x > y \rightarrow x+1 > y$ Another example: $x!=z \rightarrow (x+1)!=(x+1)*z$
- Sets
 - Object constants: {1}, {2,3},...
 - Functions: \bigcup , \bigcap ,...
 - Predicates: $_, _, ...$
 - A wff: $(x \cap \overline{y}) \subseteq (x \cup y)$

More Examples

- Our world
 - Object variables: X, Y, ...
 - upper case in PROLOG
 - Constants such as: john, mary, book, fish, flowers, ...
 - Note lower case in PROLOG
 - Functions: distance(point1, X), wife(john)
 - Predicates: owns(book, john), likes(mary, flowers), ...
 - true and false in PROLOG
 - Relative to PROLOG's knowledge of the world
 - False whenever it cannot find it in its database of facts (and rules)