Homework Assignment \#4
 Due: June 11, 2012 at 7:00 p.m.

1. Let $\Sigma=\{0,1\}$. Let $L=\left\{u v w \# v: u, v, w \in \Sigma^{*}\right\}$. Is L regular? Prove your answer is correct.
2. Let Σ be an alphabet. We define a function f that maps regular expressions to regular expressions as follows:

$$
\begin{aligned}
f(\emptyset) & =\emptyset, \\
f(\varepsilon) & =\varepsilon, \\
f(a) & =a \text { for } a \in \Sigma, \\
f\left(E_{1} E_{2}\right) & =f\left(E_{2}\right) f\left(E_{1}\right), \text { where } E_{1} \text { and } E_{2} \text { are regular expressions, } \\
f\left(E_{1} \cup E_{2}\right) & =f\left(E_{1}\right) \cup f\left(E_{2}\right), \text { where } E_{1} \text { and } E_{2} \text { are regular expressions, and } \\
f\left(E^{*}\right) & =f(E)^{*}, \text { where } E \text { is a regular expression. }
\end{aligned}
$$

(a) Write down the regular expression $f\left(a(a b)^{*} \cup \varepsilon\right)$.
(b) Prove that $L(f(E))=L(E)^{R}$ for all regular expressions E.

In your solutions, you may use the following lemmas.
Lemma 1 For any strings y and $z,(y z)^{R}=z^{R} y^{R}$.
Proof: Let $\ell_{y}=|y|, \ell_{z}=|z|$ and $\ell=\ell_{y}+\ell_{z}$.

$$
\begin{array}{rlr}
(y z)^{R}[i] & =(y z)[\ell+1-i] & \\
& =\left\{\begin{array}{ll}
y[\ell+1-i] & \text { if } \ell+1-i \leq \ell_{y} \\
z\left[\ell+1-i-\ell_{y}\right] & \text { if } \ell+1-i>\ell_{y}
\end{array}\right\} & \text { (Defn concatenation) } \\
& =\left\{\begin{array}{ll}
y\left[\ell_{y}+1-i+\ell_{z}\right] & \text { if } \ell+1-i \leq \ell_{y} \\
z\left[\ell_{z}+1-i\right] & \text { if } \ell+1-i>\ell_{y}
\end{array}\right\} & \left(\text { since } \ell=\ell_{y}+\ell_{z}\right) \\
& =\left\{\begin{array}{ll}
y\left[\ell_{y}+1-i+\ell_{z}\right] & \text { if } i>\ell_{z} \\
z\left[\ell_{z}+1-i\right] & \text { if } i \leq \ell_{z}
\end{array}\right\} & \text { (since } \left.\ell=\ell_{y}+\ell_{z}\right) \\
& =\left\{\begin{array}{ll}
y^{R}\left[i-\ell_{z}\right] & \text { if } i>\ell_{z} \\
z^{R}[i] & \text { if } i \leq \ell_{z}
\end{array}\right\} & \text { (Defn reverse) } \\
& =\left(z^{R} y^{R}\right)[i] &
\end{array}
$$

Lemma 2 For any languages L_{1} and $L_{2},\left(L_{1} L_{2}\right)^{R}=L_{2}^{R} L_{1}^{R}$.
Proof: For any string x, we have:

$$
\begin{array}{lll}
x \in\left(L_{1} L_{2}\right)^{R} & \text { iff } \exists w \in L_{1} L_{2} \text { such that } x=w^{R} & \text { (Defn reverse) } \\
& \text { iff } \exists y \in L_{1} \text { and } z \in L_{2} \text { such that } x=(y z)^{R} & \text { (Defn concatenation) } \\
& \text { iff } \exists y \in L_{1} \text { and } z \in L_{2} \text { such that } x=z^{R} y^{R} & \text { (Lemma 1) } \\
& \text { iff } \exists u \in L_{1}^{R} \text { and } v \in L_{2}^{R} \text { such that } x=v u & \text { (take } u=y^{R}, v=z^{R} \text {) } \\
& \text { iff } x \in L_{2}^{R} L_{1}^{R} & \text { (Defn concatenation) }
\end{array}
$$

