Homework Assignment \#3
 Due: June 4, 2012 at 7:00 p.m.

1. If L_{1} and L_{2} are two languages over the alphabet Σ, then we define $L_{1} \diamond L_{2}$ to be the language $\left\{x_{1} y_{1} x_{2} y_{2} \ldots x_{n} y_{n}: n \geq 0\right.$, each x_{i} and y_{i} are in $\Sigma^{*}, x_{1} x_{2} \ldots x_{n} \in L_{1}$, and $\left.y_{1} y_{2} \ldots y_{n} \in L_{2}\right\}$. Each string in this language is formed by interleaving one string from L_{1} with one string from L_{2}.
(a) If $L_{1}=\{$ BOB, MARY $\}$ and $L_{2}=\{$ PAUL $\}$, write down three strings that are in $L_{1} \diamond L_{2}$.
(b) If $L_{1}=\left\{\right.$ a\}* and $L_{2}=\{a a b\}$, give a precise description of all the strings that are in $L_{1} \diamond L_{2}$.
(c) Prove that, for all regular languages L_{1} and $L_{2}, L_{1} \diamond L_{2}$ is also regular.

The level of detail in your answer should be similar to the level of detail given in the proof of Theorem 1.47 in the textbook. If you construct an automaton for $L_{1} \diamond L_{2}$, you should give a precise description of which strings take your automaton to each state (although you do not have to give a formal proof of this claim).

