Backus-Naur Form (BNF)

◊ BNF is a common grammar used to define programming languages
 » Developed in the late 1950’s

◊ Because grammars are used to describe a language they are said to produce **sentences**
Grammars and Design

Grammars can be used to describe the structure of objects and computations.

- Can be used to describe the structure of input
 - Parse
- Can be used to generate output
 - Compute
- Can be used to describe the structure of algorithms
 - Design
A grammar, G, is a 4-tuple $G = <T, N, S, P>$, where

- **T** – a set of terminal symbols
 - They represent themselves
 - A, begin, 123

- **N** – a set of non-terminal symbols
 - They are enclosed between ‘<‘ and ‘>’
 - $<program>$, $<while>$, $<letter>$, $<digit>$

- **$S \in N$** – the starting symbol
> P – is a finite set of production or rewrite rules of the form

\[\alpha ::= \beta \]

> \(\alpha \) and \(\beta \) are sequences, strings, of terminal and non-terminal symbols

> \(| \alpha | \geq 1 \)

> \(\alpha \) contains at least one non-terminal symbol
Types of Grammars

- **Type 0 – Unrestricted or General grammars**
 - Correspond to Turing machines
 - Can compute anything

- **Type 1 – Context sensitive grammars**
 - In general not used, as they are too complex

- **Type 2 – Context free grammars**
 - Often used to describe the structure of programming languages

© Gunnar Gotshalks
Types of Grammars – 2

◊ Type 3 – Regular grammars
 » Correspond
 > Regular expressions
 > Finite state machines

» Most business problems can be described with regular grammars
 > Although context free grammars are used, due to their ease of use
Unrestricted Grammar

◊ No restrictions on the definition

 » In particular permits \(|\beta| < |\alpha| \)

 > Permits erasure of terminal symbols
Context Sensitive Grammar

◊ Restrict productions such that there is no erasure

\[|\beta| \geq |\alpha| \]

> One exception is that the starting symbol may be in the production \(<\text{Start}> ::= \varepsilon\) to be able to produce the empty sentence

◊ The following defines the language \(A^n B^n C^n\) for \(n \geq 1\)

(1) \(<S> ::= <A> C\)
(2) \(<S> ::= <A> <S> C\)
(3) \(<A> ::= <A> \)
(4) \(C ::= B C\)
(5) \(B ::= B B\)
(6) \(<A> B ::= A B\)
(7) \(<A> A ::= A A\)
Context Free Grammar

◊ Restrict α to be a single non-terminal

 \[|\alpha| = 1 \]

 > This permits non-terminals to be removed
 – Note there is no erasure as terminals cannot be removed

◊ The following defines the language

\[A^n B^n \text{ for } n \geq 0 \]

(1) \(<S> ::= \varepsilon \)
(2) \(<S> ::= A <S> B \)
Regular Grammar

◊ Restrict α to be a single non-terminal

◊ Restrict β to have at most one non-terminal, with the non-terminal, if it occurs, being at either end of β

$|\beta| \geq 1$

> One exception is that the starting symbol may be in the production $<\text{Start}> ::= \epsilon$ to be able to produce the empty sentence

◊ Can restrict, without loss of generality to productions of the following structure giving a **Right Regular Grammar**

1. $<\text{non terminal}> ::= \text{terminal}$
2. $<\text{non terminal}> ::= \text{terminal} <\text{non terminal}>$
Sentence Generation for $A^n B^n$

◊ $<S> \rightarrow \varepsilon$
 Rule 1

◊ $<S> \rightarrow A <S> B$
 $\rightarrow A B$
 Rule 1

◊ $<S> \rightarrow A <S> B$
 $\rightarrow A A <S> B B$
 Rule 2
 $\rightarrow A A B B$
 Rule 1

◊ $<S> \rightarrow A <S> B$
 $\rightarrow A A <S> B B$
 Rule 2
 $\rightarrow A A A <S> B B B$
 Rule 2
 $\rightarrow A A A B B B$
 Rule 1

◊ ...

© Gunnar Gotshalks

GR-12
Parsing & Prolog

◊ Parsing is the opposite of sentence generation
 » Task is to find a sequence of rules that produce a given sentence

◊ Prolog has a built-in notation for representing grammar rules called **Definitive Context Grammar (DCG)**
In a DCG the grammar for A^nB^n is represented as follows

(1) $S \rightarrow [A], [B]$.
(2) $S \rightarrow [A], S, [B]$.

Upper case is used in the slide for easier reading, in Prolog lower case (constants) would be used for A and B and not upper case (variables).
DCG Translation

◊ DCG statements are translated into Prolog

◊ The following are examples.

\[
N \rightarrow N_1 , N_2 , \ldots , N_n .
\]

\[
N \ (S, \ Rest) :- \
N_1(S, R_2), N_2(R_2, R_3) , \ldots , N_n(L_n, Rest) .
\]

\[
N \rightarrow [T_1] , [T_2] , \ldots [T_n] .
\]

\[
N([T_1, T_2, \ldots , T_n \ I \ Rest] , Rest) .
\]

\[
N \rightarrow N_1 , [T_2] , N_3 , [T_4] .
\]

\[
N(S, \ Rest) :- N_1(S, [T_2 \ I \ R_3]) , N_3(R_3, [T_4 \ I \ Rest]) .
\]

\[
N \rightarrow [T_1] , N_2 , [T_3] , N_4 .
\]

\[
N([T_1 \ I \ R_2], \ Rest) :- \
N_2(R_2, [T_3 \ I \ R_4]) , N_4(R_4, Rest) .
\]
Translation of $A^n B^n$

\[
S \rightarrow [A], [B]. \\
S \rightarrow [A], S, [B].
\]

\[\Rightarrow\]

\[s([a, b \mid \text{Rest}], \text{Rest}).\]

\[s([a \mid \text{R1}], \text{Rest}) :- s(\text{R1}, [b \mid \text{Rest}]).\]

◊ Every sentence is represented by 2 lists

» Difference lists of symbols

> The first list is the sentence you are parsing

> The second list is the part of the sentence that is left-over when parsing is done

Sample queries

\[s([a, b], []).\]

\[s([a, a, b, b], []).\]

\[s([a, a, b, b, c], [c]).\]
Movement example

move --> step.
move --> step, move.
step --> [up].
step --> [down].

Example queries

move ([up, up, down], []).
move ([up, up, left], []).
move ([up, M, up], []).

Translation

move (List, Rest) :- step (List, Rest).
move (List1, Rest) :- step (List1, List2), move(List2, Rest).
step ([up | Rest], Rest).
step ([down | Rest], Rest).
P is a T example using determinants

Example query
parse ([‘John’ , is , a , person , ‘.’] , []).

Translation
parse (S , Sr) :- det1 (S , S0)
 , det2 (S0 , S1)
 , det3 (S1 , S2)
 , det4 (S2 , Sr).

det1 ([P | St] , St) .
det2 ([is , a | St] , St) .
det3 ([T | St] , St) .
det4 ([‘.’ | St] , St) .
Grammars & Algorithms

◊ Unrestricted grammars have been used to write programs
 » Snobol language was used to develop a system called MUMPS that was used in hospital applications circa 1960’s–1970’s
In Snobol a grammar is defined to translate (rewrite) an input string of symbols to an output string of symbols.

- The production rules are applied using the Markov algorithm.
 - Developed during the 1940's as yet another description of what it means to compute.
 - Works in a similar way to Prolog.
Markov Algorithm

◊ Input
 » A numbered set of productions $\alpha \rightarrow \beta$
 > Numbering is from 1 up
 » An input string – maStr – over the alphabet
 > No distinction needed for terminals and non-terminals

◊ Computation
 » The productions are applied to the sequence of strings beginning with the input string

◊ Output
 » The resulting string when no production is applicable
PROCEDURE
VAR j : integer { An index to a production.}
; k : integer { An index to the occurrence of an alpha [j] in maStr.}
; notAtEnd : boolean { Goes FALSE when algorithm is done.}
BEGIN
j := 1 { Start at production 1.}
; notAtEnd := true

WHILE notAtEnd DO BEGIN
... DO loop body – see next slide
END
END
Markov Algorithm Body of Loop

{ Find left most occurrence of alpha. }
k := index (maStr, 1, alpha [j])

; IF k = 0 THEN
 BEGIN j := j+1
 { No alpha, try the next production. }
 END

; IF j > prodCount
 THEN notAtEnd := false
 { Do we have a production to try? }
 END

ELSE BEGIN
 { Found alpha, apply production. }
 replace (maStr, beta [j], k, alpha [j] . length)
 j := 1
 { Start with first production again. }
END

END
Some productions terminate with a period
 » If such a production is applied, the computation terminates

Some productions are labeled

Some productions have success and failure tags
 » If such a production is applied, the Markov algorithm resumes from the production labeled by the success tag
 » If such a production is not applied, then the Markov algorithm resumes from the production labeled by the failure tag