
CS141 Verilog Tutorial

Verilog Tutorial - Edited for CS141

Lukasz Strozek

October 8, 2005

Based on Weste and Harris and “Verilog According to Tom”

1 Introduction

Verilog is language commonly used in designing digital systems. It’s a hardware description
language, which means that it’s substantially different from any other language you might
have encountered so far. Even though it does have control flow statements and variables,
it relies primarily on logic functions. Refer to any boolean logic reference for the necessary
background information.

For an interested reader, Verilog, created in 1985, was initially only intended to be a simu-
lation language (which means that you had to write your programs in Verilog to test them,
and then rewrite them in a different language to actually implement your system. Imagine
what a pain this would be!), but its market has grown substantially and right now it’s the
most widely used Hardware Description Language in the US.

2 Program Structure

Verilog programs are composed of a set of modules. Each module can be thought of as a
function in C – it’s a set of lower-level routines which can be reused in your main program.
Thus, the Verilog programming model resembles one of an imperative programming language
like C: the main program, composed of functions (each of which takes inputs as parameters
and returns output values), itself takes inputs and returns outputs, mapped to some pins in
your digital system. Below is an example of what a very simple Verilog program looks like

// A simple Verilog program that implements a not-too-complicated logic

// function of four variables: (A NAND B) NAND (C NAND D)

//

module mynand(in1, in2, out);

input in1, in2;

output out;

1

CS141 Verilog Tutorial

assign out = ~(in1 & in2);

endmodule

// This is the main program

//

module somefunction(p, q, p_b, q_b, o);

input p, q, p_b, q_b;

output o;

wire w, w_b;

mynand nand1(p, q, w);

mynand nand2(p_b, q_b, w_b);

mynand nand3(w, w_b, o);

endmodule

Let’s analyze this program: first, it consists of a low-level module that implements a nand
gate (called mynand) and the main program somefunction which uses three mynand modules.
mynand takes three arguments: two of them are inputs and the third is the output, which
is specified in the header of the module. The output wire is assigned a value – the logical
NAND of in1 and in2.

somefunction Takes four inputs and one output. It uses intermediate values w and w b to
wire up two NAND gates together with another NAND gate.

One important thing that you, a beginning Verilog user, need to consider is that module in-
vocation and assignments are not imperative in nature. We are not really assigning anything
to the variable called out. Similarly, w and w b are not local variables. Instead, you should
think of the statement assign as something that wires up the right-hand side with the left-
hand side, and think of all inputs, outputs and intermediate values are physical wires. So all
that mynand does is take in1 and in2 (whatever wires they may end up being), wire them
up with an NAND and wire the output to out. So, calling nand1(p, q, w) simply wires
up p and q in an NAND whose output becomes w. This visual representation (inputs and
outputs as wires) will help you avoid many mistakes when coding your system in Verilog.

Sometimes (if you’re using a foreign module for which you only have signal names) you may
need to use the extended Verilog module calling syntax, which lets you rearrange the order
of signals passed to the module. For example, you could replace mynand nand1(p, q, w)

with the following:

mynand nand1(.out(w), .in1(p), .in2(q))

2

CS141 Verilog Tutorial

3 Syntax Basics

assign causes the left-hand side to be updated any time the right hand side changes. This
is equivalent to saying that it wires up the left hand side with the right hand side. assign

causes a permanent link between the two, in a sense that it makes no sense to reassign the
same inputs and outputs.

∼ a negates the input a. a & b ANDs the two inputs together, a | b ORs them together,
while ∧ performs a logical XOR on a and b. Hence,

∼(a | b)

implements a NOR function.

Verilog uses C-style comments. // marks the beginning of a line of comments. Moreover,
anything between /* and */ is also treated as a comment.

Verilog supports the C ternary operator, as in

assign y = s ? d1 : d0;

assigns y to d1 if s is 1 and to d0 otherwise. The ternary operator implements the simplest
2:1 multiplexer (you will learn about these later on in class).

Verilog also supports ordinary C operators like +, -, *, <, >, <=, >=, ==, ! =, <<, >>,
/ and %. A work of caution, though, is that some of these operators are really expensive
in hardware. To implement a multiplier, a large number of gates need to be used, so when
possible avoid using these. In particular, in class we will ask you to never use any of these
operators unless specifically told to do so.

Operator precedence follows the rules present in the C syntax. The following table shows all
the operators and their precedence, from highest to lowest:

3

CS141 Verilog Tutorial

∼
*, /, %
+, -
<<, >>

<, <=, >, >=
=, ==, ! =
&, ∼&
∧, ∼∧

|, ∼|

?:

Constants may be specified in many bases, though we will stick to binary and hexadecimal.
To represent a number in binary, specify the length of the number in bits (though optional,
this is highly recommended), followed by an apostrophe, followed by the sequence of zeroes
and ones (leading zeroes may be omitted. For example, the number 5 can be specified as

8’b101

Hexadecimal numbers have an additional h after the apostrophe. A number 139 can be
specified as

8’h8B

Omitted bases are treated as decimal numbers, but these will be stored with a number of
leading zeroes, which leads to inefficient design. It is advantageous to use specified bases.

A special value, High-Z, can be used, and is denoted as a binary z, e.g.

4’bz

You will learn more about High-Z values later on in the course.

You can define constants with parameter, for example:

parameter SEVEN = 4’b0111;

Finally, if you want to explicitly specify a delay of a statements, you can do it by following
the keyword with a pound-number, as in the following example:

assign #42 y = ∼a

4

CS141 Verilog Tutorial

4 Buses

You will notice soon that one-bit signals are simply not enough. Instead of tediously defining
hundreds of input and output wires and wiring them separately, Verilog supports buses, i.e.

collections of wires on which similar functions are performed. To define a bus, specify the
highest and the lowest bit of a bus in square brackets next to the signal’s name. For example,

module inv(a, y);

input [3:0] a;

output [3:0] y;

assign y = ~a;

endmodule

defines two four-wire buses (remember that we count from zero!) and assigns y to be a NOT
of a, i.e. each wire in y is hooked up to a corresponding wire in a by a NOT gate. Note
that all bitwise operations (described in the previous section) work on buses, too.

Sometimes a need may emerge to collapse, or reduce a bus to a single wire with some function.
Reduction operators let you take all wires of a bus, connect them to a single multi-input
function, and assign the output to a single wire. These operators are &, |, ∧, ∼& and ∼|,
placed in front of the bus, for AND, OR, XOR, NAND and NOR respectively. For example,

module and8(a, y);

input [7:0] a;

output y;

assign y = &a;

endmodule;

implements an 8-input, 1-output AND gate. Note that a multi-input XOR is a parity
function, returning 1 if an odd number of inputs are 1.

It is also possible to take subsets of wires from buses. This is achieved by specifying the
high and the low wire used in square brackets. For example, if a and b are 8-bit buses, the
following is used to AND the high four bits of a and the low four bits of b:

and4(a[7:4], b[3:0])

5

CS141 Verilog Tutorial

Moreover, it is possible to combine buses. This is achieved by grouping buses (or subsets of
buses) in curly braces, prefixing repeated components with a number. Grouped buses may
appear on the left-hand side, as well as the right-hand side of an expression. For example, to
create a 16-bit bus composed of three copies of a 4-bit bus, two upper bits of another 4-bit
bus, and two zeroes as the least significant bits, we would write

input [3:0] a, b;

output [15:0] y;

assign y = {3{a[3:0]}, b[3:2], 2’b00}

Do you see why specifying lengths of binary constants is a good idea?

5 Combining Values

All Verilog signals have one of four values at a time. These values are:

• 0 – Low (false)
• 1 – High (true)
• X – Undefined
• Z – High-Z (floating, high impedance)

You will learn about a High-Z value later on in the course. For now it should suffice to
say that a High-Z is something like an “unimportant” value, so if two wires are combined,
High-Z always gives way to the other value. The table below explains what happens if you
combine values:

0 1 X Z
0 0 X X 0
1 X 1 X 1
X X X X X
Z 0 1 X Z

So combining a 0 and a High-Z, for instance, results in a 0. Let’s show an example of tristate
(0, 1, and High-Z) logic:

module tristate(a, en, y);

6

CS141 Verilog Tutorial

input [3:0] a;

input en;

output [3:0] y;

assign y = en ? a : 4’bz;

endmodule

module mux2(d0, d1, s, y);

input [3:0] d0, d1;

input s;

output [3:0] y;

tristate t0(d0, ~s, y);

tristate t1(d1, s, y);

endmodule

Let’s see what exactly is going on here. First a tristate buffer module is defined. This
buffer will simply carry its input over if enable en is 1, or output High-Z otherwise. Then,
a mux2 module wires up two such buffer in a way that exactly one is High-Z and the other
one is either 0 or 1. Notice that both tristate buffers have been wired to the same output –
y. This is allowed since High-Z is combined with a 0 or a 1 here.

6 More Complex Language Constructs

always is a statement that lets you define blocks of code, in which assignments will only
happen as selected signals (specified in the header of the statement) change. For example,

input a, d

reg out

always @(a or d)

out = d

sets out to d only if the value of a or the value of d changes. Notice a slightly different syntax
(we’re using the word or as opposed to the symbol |, and = instead of assign). Another
possibility is to specify that an assignment happens on the rising (or falling) clock edge. If
clk is the clock input,

always @(posedge clk)

7

CS141 Verilog Tutorial

achieves this task. Notice that all signals on the left-hand side of the = sign inside always

blocks must be declared as reg, not wire. All such signals will be initialized to X (see section
on four values in Verilog).

If you need to perform more than one operation under the always block, you need to enclose
the operations with begin and end.

always is most often combined with if (and possibly else if and else) to create powerful
sequential logic systems. Study the following example:

always begin

if (a==2’b01) b = 2’b01;

else if (a>2’b01) begin

b = a;

c = 1;

end

end

Two possible assignment syntaxes are a = b and a <= b. The difference lies in concurrency
– all expressions of the former type are evaluated sequentially while all expressions of the
latter type are evaluated in parallel. For example,

a <= b

b <= a

swaps the values of a and b while

a = b

b = a

simply sets both a and b to the previous value of b (the second assignment is using the value
of a from the first assignment). Concurrent assignment can get really confusing and so it is
recommended that you use the sequential =.

One very useful construct, which only works in the always block, is case. The following
example shows how to construct a decoder (a logic device which takes a k-wire wide bus
which carries a binary number l (0 6 l 6 2k − 1), and outputs a 2k-wire wide bus such that
the only wire that’s set to 1 is wire l:

8

CS141 Verilog Tutorial

module my_decoder(a, y);

input [2:0] a;

output [7:0] y;

reg [7:0] y;

always @(a)

case (a)

3’b000: y = 8’b00000001;

3’b001: y = 8’b00000010;

3’b010: y = 8’b00000100;

3’b011: y = 8’b00001000;

3’b100: y = 8’b00010000;

3’b101: y = 8’b00100000;

3’b110: y = 8’b01000000;

3’b111: y = 8’b10000000;

endcase

endmodule

The expression inside of case may also be a concatenated bus, for example

case ({a, b})

will help you draw out a truth table for a two-input logic.

casez is a variation of case which allows the use of Don’t-cares in the constants being
evaluated. For instance, the following is acceptable:

casez (a)

3’b0??: y = 1’b0;

3’b101: y = 1’b0;

3’b100: y = 1’b1;

3’b11?: y = 1’b1;

endcase

7 Common errors

Below is a brief list of common errors that you may commit writing modules in Verilog:

9

CS141 Verilog Tutorial

• You are using sequential logic outside of the always block, or unnecessarily using
combinational logic in the always block (unless case is necessary)

• You are getting Verilog’s X values. Make sure all outputs are defined, you don’t short-
circuit outputs (wire outputs to more than one module without a High-Z) and that
your if-else logic works correctly (you’re not skipping any cases)

• You are missing begin-end block in your always statement

10

