
State-Based Testing 
Part A – Modeling states"

Generating test cases for complex behaviour!
!
!
!

Reference:!Robert V. Binder  
	Testing Object-Oriented Systems: Models, Patterns, and Tools  
	Addison-Wesley, 2000, Chapter 7!

SM–2

Motivation"

  We are interested in testing the behaviour of many different
types of systems, including event-driven software systems!

  Interaction with GUI systems can follow a large number of
paths!

  State machines can model event-driven behaviour!

  If we can express the system under test as a state machine,
we can generate test cases for its behaviour!

SM–3

OO Systems"

  State-based testing is well suited to OO Systems!

  Behaviour responsibility is distributed over!
  Classes, clusters, subsystem or system"
  Behaviour bugs due to complex and implicit structure"

SM–4

State machine"

  What is a state machine?"

SM–5

A state machine is …"

  A system whose output is determined by both current state
and past input!

  Previous inputs are represented in the current state!

  State-based behaviour!
  Identical inputs are not always accepted"

  Depends upon the state"
  When accepted, they may produce different outputs"

  Depends upon the state"

SM–6

Building blocks of a state machine"

  What are the building blocks of a state machine?!

SM–7

Building blocks of a state machine – 2"

  State!
  An abstraction that summarizes past inputs, and

determines behaviour on subsequent inputs"

  Transition!
  An allowable two-state sequence. Caused by an event"

  Event!
  An input or a time interval"

  Action!
  The output that follows an event"

SM–8

State machine behaviour"

"

"
  Describe the behaviour of a state machine?!

SM–9

State machine behaviour – 2"

1.  Begin in the initial state"

2.  Wait for an event!

3.  An event comes in!
1.  If not accepted in the current state, ignore"
2.  If accepted, a transition fires, output is produced (if

any), the resultant state of the transition becomes
the current state"

4.  Repeat from step 2 unless the current state is a final state"

SM–10

State machine properties"

  How events are generated is not part of the model!

  Transitions fire one at a time!

  The machine can be in only one state at a time!

  The current state cannot change except by a defined
transition!

  States, events, transitions, actions cannot be added during
execution!

SM–11

State machine properties – 2"

  Algorithms for output creation are not part of the model!

  The firing of a transition does not consume any amount of
time!
  An event is instantaneous"

  It has no beginning or ending"
  Beginnings and endings imply duration"

The challenge"
"How to model the behaviour of a given
"system using a state machine?"

SM–12

State transition diagram"

  What is a state transition diagram?"

SM–13

State transition diagram – example"

SM–14

Complete & incomplete specifications"

  What are complete and incomplete state machine
specifications?!

SM–15

Complete & incomplete specifications – 2"

  Complete specifications!
  A transition for every event-state pair  
"

  Incomplete specifications!
  The norm for modeling"

  For design too cumbersome to completely specify,
as only a small subset is of interest 
"

  Cannot ignore unspecified event-state pairs for testing"
  Why?"

SM–16

Equivalent states"

  What are equivalent states?"

  What problem exists with equivalent states?!

SM–17

Equivalent states"

  Any two states are equivalent!
  If all possible event sequences applied to these states

result in identical behaviour"
  By looking at the output cannot determine from which

state machine was started"
  Can extend to any pair of states  
"

  Minimal machine has no equivalent states!

SM–18

Equivalent states"

  What problem exists with equivalent states?!

SM–19

Equivalent states"

  A model with equivalent states is redundant!
  Probably incorrect"
  Probably incomplete"

SM–20

Reachability"

  What is reachability?!

SM–21

Reachability – 2"

  State Sf is reachable from state St!
  If there is a legal event sequence that moves the

machine from Sf to St"
  Just stating a state is reachable implies reachable

from the initial state"

SM–22

Reachability problems"

  Using the notion of reachability, what problems does it
show?!

SM–23

Reachability problems – 2"

  Dead state!
  Cannot leave"

  Cannot reach a final state"

  Dead loop!
  Cannot leave"

  Cannot reach a final state"

  Magic state!
  Cannot enter – no input transitions"
  Can go to other states"

  Extra initial state"

SM–24

Guarded transitions"

  What is a guarded transition?!

SM–25

Guarded transitions – 2"

  The stack example state machine is ambiguous!
  There are two possible reactions to push and pop in

the Loaded state"

  Guards can be added to transitions!

  A guard is a predicate associated with the event!

  A guarded transition cannot fire unless the guard predicate
evaluates to true!

SM–26

Guarded transitions – example"

SM–27

Limitations of the basic model"

  Limited scalability!
  Even with the best tools available, diagrams with 20

states or more are unreadable"

  Concurrency cannot be modeled!
  Different processes can be modeled with different

state machines, but the interactions between them
cannot"

  Not specific enough for Object-Oriented systems!

SM–28

Statechart – Scalability – traffic light example"

SM–29

Traffic light with superstates – all states view"

Superstates!

Common to 
all inner states"

Initial state!

SM–30

Traffic light – top level view"

SM–31

Traffic light – level 1 view"

SM–32

Traffic light – level 2 view"

SM–33

Statechart advantages"

  Easier to read!

  Suited for object oriented systems (UML uses statecharts)!

  Hierarchical structure helps with state explosion!

  They can be used to model concurrent processes as well!

SM–34

Statechart problems"

  Can vary in their details and implementation with different
case systems!
  Need to be very careful when testing"

SM–35

Concurrent statechart"

SM–36

State model"

  Must support automatic test generation!

  The following criteria must be met!
  Complete and accurate reflection of the

implementation to be tested"
  Allows for abstraction of detail"
  Preserves detail that is essential for revealing faults"
  Represents all events and actions"
  Defines state so that the checking of resultant state

can be automated"

SM–37

What is a state?"

  We need an executable definition that can be evaluated
automatically!

  An object with two Boolean fields has 4 possible states?!
  This would lead to trillions of states for typical classes"

SM–38

Trillions of states"

SM–39

What is a state? – 2"

  How can we address the problem?!

SM–40

What is a state? – 3"

  A set of variable value combinations that share some property
of interest!
  Can be coded as a Boolean expression"

SM–41

An example"

  Consider the following class 
 
 
 
 
!

  The cross-product of all values is a primitive view of the state
space!
  Yields too many states"

  What abstraction gives fewer states?"

  How is the abstraction represented?"

Class Account {
 AccountNumber number;
 Money balance;
 Date lastUpdate;
 …
}

SM–42

Three abstract states"
Shaded volumes

SM–43

State invariants"

  A valid state can be expressed with a state invariant!
  A Boolean expression that can be checked 
"

  A state invariant defines a subset of the values allowed by the
class invariant!

 ensure a or b"
  In Eiffel this defines two possible states"

SM–44

Transitions"

  A transition is a unique combination of!
  Two state invariants"

  One for the accepting"
  One for the resultant state"
  Both may be the same"

  An associated event"
  An optional guard expression"
  Optional action or actions"

SM–45

Transition events"

  A message sent to the class under test!

  A response received from a supplier of the class under test!

  An interrupt or similar external control action that must be
accepted!

SM–46

Transition actions & guards"

  A guard!
  Predicate associated with an event"
  No side effects  
"

  An action!
  The side effect that occurs"

SM–47

Alpha states"

  The initial state of an object is the state right after it is
constructed!

  However, a class may have multiple constructors that leave
the object in different states!

  To avoid modeling problems we define that an object is in
the α state just before construction!

  α transitions go from α state to a constructor state"

SM–48

Omega states"

  Similarly with ω and destruction!

  Not necessary to model ω for languages that have
garbage collection"

  ω transitions go from a destructor state to the ω
state"

