Winter 2009

CSE-3421-Introduction-Godfrey

Winter 2009

CSE-3421—Introduction—Godfrey

Databases & Information Systems Database: storage

• store data (permanently)

- Handle lots of data. Petabytes?
- Have a logical structure to the data. schema design / modeling
- Don't allow logical corruption of the data set. integrity \mathcal{E} transaction management
- Be able to recover with no loss from practically any crash / disaster. crash recovery
- Let 1000's of users use the same database at the same time. $concurrency\ control\ \mathcal{C}\ transaction$ management
- Hide certain information from certain users. security

Databases & Information Systems What is this?

Task: Store, manage, & retrieve large amounts of data.

Sounds boring, eh? Surprisingly not. (Well, maybe.)

Change in emphasis from rest of CS.

CS: Using computers to compute things. (programming)

DB: Using computers to manage data. $(querying, \ldots)$

Data-driven.

CSE-3421—Introduction—Godfrey

Winter 2009

CSE-3421—Introduction—Godfrey

Databases & Information Systems Database: models & design

• data models

What information does a given database store?

- Need a general model for what a DB looks
 - * O-O: classes and pointer
 - * relational: tables and constraints

What should the model be?

\bullet schemas

The "format" for a given database is called a schema.

- design: What should the schema be, given a particular domain we want to store data about?

Databases & Information Systems Database: queries

• retrieve data

How to find what you need out of a petabyte? Paradigm: Ask the database a question (query).

DB will answer the query by composing the relevant data from the database.

- query language (FRONT-END) Our interface to the DB.
 - * very expressive: a subset of first-order logic
 - * declarative: I express what I want, but not how it is to be done.
 - * examples:
 - \cdot relational algebra & calculus
 - · query-by-example (QBE)
 - \cdot SQL
- query language (BACK-END)
- * How to answer (evaluate) the question (query) efficiently and correctly?

Winter 2009

Winter 2009 CSE-3421-Introduction-Godfrey

Databases & Information Systems Database: updates

• update data

Can easily update the information in the database.

- integrity: Updates must respect the database's integrity.
- consistency: Updates should be consistent with respect to one another.
- **security** / **privacy**: Only certain users should be allowed to update certain data; only certain users should be allowed to read certain data.

Winter 2009 CSE-3421—Introduction—Godfrey

Databases & Information Systems Database Systems (p.1)

• Database Management Systems

What is a database system?

- Supports the creation / alteration / deletion of databases.
- Should it help with schema design?
 - * Supports and enforces schemas.
 - * Does not really help with design. (Sigh)

Winter 2009

CSE-3421—Introduction—Godfrey

Winter 2009

CSE-3421—Introduction—Godfrey

Databases & Information Systems Database Systems (p.2)

• Database Management Systems

- Supports all the properties we want for our databases.
 - *permanence
 - · crash recovery
 - · back-ups
 - * updates $\mathscr E$ transactions
 - \cdot transaction management (consistency) & concurrency control
 - · integrity checking
 - · security / privacy
 - * queries
 - · a powerful, declarative query language
 - \cdot interface to programming languages

Databases & Information Systems Why interesting?

This is a microcosm of CS itself!

• Logic

- modeling / schema design
- query languages

- query evaluation & optimization
- data mining

- complexity of queries
- ... of query answering

• Data structures & Algorithms

- databases = advanced data structures
- new challenges for algorithms
 - * E.g., Sort a list larger than main memory.

• Programming & Software Design

- query languages
- application programming

• Systems / OS

- building database systems
 - * resource management
- * software / hardware interface

• Networks

- distributed information systems
- Web

Winter 2009 CSE-3421—Introduction—Godfrey

Databases & Information Systems Areas

- Database systems (primarily relational)
- Information Retrieval
 - search engines
- Data Mining (Knowledge Discovery in Databases / KDD)
 - How to derive automatically interesting patterns ("knowledge") from large databases.
- Information Systems at large
 - E-commerce Systems
 - $*\ multi-tier\ architectures$
 - * focus: business solutions
 - Web Technologies
 - * back-ended by database systems
 - * data-driven
 - $*\ making\ information\ ubiquitous$

— . .

Winter 2009 CSE-3421—Introduction—Godfrey

Databases & Information Systems Curriculum at York

- Database systems
 - CSE-3421: Databases "Programming"
 - $*\ database\ design$
 - *SQL
 - CSE-4411: Database Systems "OS"
 - * database system architecture
 - * query optimization
- Data Mining
 - CSE-4412: Data Mining
 - * data warehousing & OLAP
 - * algorithms for data mining
 - * machine learning
- E-commerce
 - CSE-4413: E-commerce Systems
 - * standards
 - * multi-tiered systems
 - $*\ advanced\ application\ programming$

• Background?

- standard CS
- logic!!
- statistics & probability

Winter 2009

 ${\it CSE-3421-Introduction}--{\it Godfrey}$

Winter 2009

p. 11

CSE-3421—Introduction—Godfrey

p. 12

Databases & Information Systems Research

- \bullet How to build a better system?
 - handle more data (scaling up)
 - $-\operatorname{handle}$ more complex queries
- How to support more applications?
 - more expressive query languages
 - more & better tools
- How to integrate into more complex systems?
 - $-\operatorname{integrating}$ multiple databases
 - integrating into larger software systems

E.g., How to ask *best-match* queries in databases? How to include *preferences* in queries?

Skyline Queries

select * from RestaurantRating skyline of Service max, Food max, Decor max, Price min

Databases & Information Systems Sources

- ACM (Groups & Conferences)
 - SIGMOD

http://www.acm.org/sigmod/

– KDD

http://www.acm.org/sigkdd/

- VLDB (Organization & Conference)
 - http://www.vldb.org/
 - Conference: 30 August 3 September 2004, Toronto!!
- On-line Resources
 - DBLP Archive:

http://www.informatik.uni-trier.de/ ley/db/

- DBWORLD mailing list
- Journals
 - TODS
 - IEEE TKDE
 - VLDB Journal
 - JIIS (Journal on Intelligent Information Systems)

- .