

Quick Sort

Fastest known sorting algorithm in practice
Average case: $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
Worst case: $\mathrm{O}\left(\mathrm{N}^{2}\right)$
But the worst case can be made exponentially unlikely.
Another divide-and-conquer recursive algorithm, like merge sort.

Quick Sort: Main Idea

1. If the number of elements in S is 0 or 1 , then return (base case).
2. Pick any element v in S (called the pivot).
3. Partition the elements in S except v into two disjoint groups:
$S_{1}=\{x \in S-\{v\} \mid x \leq v\}$
$S_{2}=\{x \in S-\{v\} \mid x \geq v\}$
4. Return $\left\{\right.$ QuickSort $\left(\mathrm{S}_{1}\right)+\mathrm{v}+$ QuickSort $\left.\left(\mathrm{S}_{2}\right)\right\}$

Quick Sort: Example

Example of Quick Sort...

Issues To Consider

How to pick the pivot?
Many methods (discussed later)
How to partition?
Several methods exist.
The one we consider is known to give good results and to be easy and efficient.
We discuss the partition strategy first.

Partitioning Strategy

For now, assume that pivot $=\mathrm{A}[($ left+right $) / 2]$.
We want to partition array A[left .. right].

- First, get the pivot element out of the way by swapping it with the last element (swap pivot and A[right]).
Let i start at the first element and j start at the next-tolast element ($\mathrm{i}=$ left, $\mathrm{j}=$ right -1)

Partitioning Strategy

- Want to have
$\mathrm{A}[\mathrm{k}] \leq$ pivot, for $\mathrm{k}<\mathrm{i}$
$A[k] \geq$ pivot, for $k>j$
- When $\mathrm{i}<\mathrm{j}$

Move i right, skipping over elements smaller than the pivot
Move j left, skipping over elements greater than the pivot
When both i and j have stopped

- A $[\mathrm{i}] \geq$ pivot
$-A[j] \leq$ pivot $\Rightarrow A[i]$ and $A[j]$ should now be swapped

Partitioning Strategy (2)

When i and j have stopped and i is to the left of j (thus legal)
Swap A[i] and A[j]
The large element is pushed to the right and the small element is pushed to the left
After swapping

- $\mathrm{A}[\mathrm{i}] \leq$ pivot
- $A[j] \geq$ pivot

Repeat the process until i and j cross

Partitioning Strategy (3)

When i and j have crossed swap A[i] and pivot
Result:
A $[k] \leq$ pivot, for $k<i$
A $[k] \geq$ pivot, for $k>i$

swap $A[i]$ and pivot

Picking the Pivot

There are several ways to pick a pivot.

Objective: Choose a pivot so that we will get 2 partitions of (almost) equal size.

Picking the Pivot (2)

Use the first element as pivot
if the input is random, ok.
if the input is presorted (or in reverse order)

- all the elements go into S_{2} (or S_{1}).
- this happens consistently throughout the recursive calls.
- results in $\mathrm{O}\left(\mathrm{N}^{2}\right)$ behavior (we analyze this case later).

Choose the pivot randomly
generally safe,
but random number generation can be expensive and does not reduce the running time of the algorithm.

Picking the Pivot (3)

Use the median of the array (ideal pivot)
The $\lceil\mathrm{N} / 2\rceil$ th largest element
Partitioning always cuts the array into roughly half
An optimal quick sort ($\mathrm{O}(\mathrm{N} \log \mathrm{N})$)
However, hard to find the exact median

Median-of-three partitioning

eliminates the bad case for sorted input.
reduces the number of comparisons by 14%.

Median of Three Method

- Compare just three elements: the leftmost, rightmost and center

Swap these elements if necessary so that

- A[left]
= Smallest
- A[right] $=$ Largest
- A[center] $=\quad$ Median of three

Pick A[center] as the pivot.
Swap A[center] and A[right - 1] so that the pivot is at the second last position (why?)
int center $=($ left + right $) / 2$;
if(a[center] < a[left])
swap(a[left], a[center]);
if(a[right] < a[left])
swap(a[left], a[right]);
if(a [right] < a [center])
swap (a [center], a[right]);
// Place pivot at position right - 1
swap (a[center], a[right - 1]);

Median of Three: Example

We only need to partition $\mathrm{A}[$ left $+1, \ldots$, right -2$]$. Why?

Quick Sort Summary

Recursive case: QuickSort(a, left, right)
pivot = median3(a, left, right);
Partition a[left ... right] into a[left ... i-1], i, a[i+1 ... right];
QuickSort(a, left, i-1);
QuickSort(a, i+1, right);

Base case: when do we stop the recursion?
In theory, when left >= right.
In practice, ...

Small Arrays

For very small arrays, quick sort does not perform as well as insertion sort
Do not use quick sort recursively for small arrays
Use a sorting algorithm that is efficient for small arrays, such as insertion sort.
When using quick sort recursively, switch to insertion sort when the sub-arrays have between 5 to 20 elements (10 is usually good).
saves about 15% in the running time.
avoids taking the median of three when the sub-array has only 1 or 2 elements.

Quick Sort: Pseudo-code

```
if( left + 10 <= right )
{
    Comparable pivot = median3( a, left, right ); }\longrightarrow\mathrm{ Choose pivot
        // Begin partitioning
    int i = left, j = right - 1;
    for(; ; )
    {
        while( a[ ++i ] < pivot ) { }
        while( pivot < a[--j]) {}
        if( i < j )
            swap(a[i ], a[j ] );
        else
        break;
    }
    swap( a[ i ], a[ right - 1 ]); // Restore pivot
    quicksort( a, left, i - 1); // Sort small elements
    quicksort( a, i + 1, right ); // Sort large elements
}
els? // Do an insertion sort on the subarray
    insertionSort( a, left, right );
        Partitioning
        For small arrays
```


Partitioning Part

The partitioning code we just saw works only if pivot is picked as median-of-three.

A[left] \leq pivot and A[right] \geq pivot

- Need to partition only

A[left + 1, \ldots, right - 2]
j will not run past the beginning
because A[left] \leq pivot
i will not run past the end because A[right-1] = pivot

```
int i = left, j = right - 1;
for( ; ;)
    while( a[ ++i ] < pivot) { }
    while( pivot < a[ --j ] ) { }
    if( i < j )
        swap( a[ i ], a[ j ] );
    e1se
        break;
}
```


Homework

Assume the pivot is chosen as the middle element of an array: pivot $=\mathrm{a}[($ left + right $) / 2]$.
Rewrite the partitioning code and the whole quick sort algorithm.

Quick Sort Faster Than Merge Sort

Both quick sort and merge sort take $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ in the average case.
But quick sort is faster in the average case:
The inner loop consists of an increment/decrement (by 1 , which is fast), a test and a jump.
There is no extra juggling as in merge sort.

```
int i = left, j = right - 1;
for( ; ; )
{
    while( a[ ++i ] < pivot ) { }
    while( pivot < a[ --j ] ) { }
    if( i< j) ( Swap( a[ i ], a[ j ]); inner loop
    e1se
        break;
}
```


Analysis

Assumptions:

- A random pivot (no median-of-three partitioning)
- No cutoff for small arrays (to make it simple)

1. If the number of elements in S is 0 or 1 , then return (base case).
2. Pick an element v in S (called the pivot).
3. Partition the elements in S except v into two disjoint groups:
$S_{1}=\{x \in S-\{v\} \mid x \leq v\}$
4. $S_{2}=\{x \in S-\{v\} \mid x \geq v\}$
5. Return $\left\{\right.$ QuickSort $\left(S_{1}\right)+v+$ QuickSort $\left.\left(S_{2}\right)\right\}$

Analysis (2)

- Running time
pivot selection: constant time, i.e. $\mathrm{O}(1)$
partitioning: linear time, i.e. $\mathrm{O}(\mathrm{N})$
running time of the two recursive calls
- $\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{i})+\mathrm{T}(\mathrm{N}-\mathrm{i}-1)+\mathrm{cN}$
i: number of elements in S1
c is a constant

Worst-Case Scenario

What will be the worst case?
The pivot is the smallest element, all the time
Partition is always unbalanced

$$
\begin{aligned}
T(N) & =T(N-1)+c N \\
T(N-1) & =T(N-2)+c(N-1) \\
T(N-2) & =T(N-3)+c(N-2) \\
& \vdots \\
T(2) & =T(1)+c(2) \\
T(N) & =T(1)+c \sum_{i=2}^{N} i=O\left(N^{2}\right)
\end{aligned}
$$

Best-Case Scenario

What will be the best case?
Partition is perfectly balanced.
Pivot is always in the middle (median of the array).
$\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N} / 2)+\mathrm{T}(\mathrm{N} / 2)+\mathrm{cN}=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{cN}$

This recurrence is similar to the merge sort recurrence.
The result is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.

Average-Case Analysis

Assume that each of the sizes for S_{1} is equally likely \Rightarrow has probability $1 / \mathrm{N}$.
This assumption is valid for the pivoting and partitioning strategy just discussed (but may not be for some others),
On average, the running time is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.
Proof: pp 272-273, Data Structures and Algorithm Analysis by M. A. Weiss, $2^{\text {nd }}$ edition

Next time ...

Arrays (review)

- Linked Lists (3.2, 3.3)
- Comparing sorting algorithms
- Stacks, queues (Chapter 5)

