
1300 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

ATCP: TCP for MobileAd HocNetworks
Jian Liu, Member, IEEE,and Suresh Singh, Member, IEEE

Abstract—Transport connections set up in wirelessad hocnet-
works are plagued by problems such as high bit error rates, fre-
quent route changes, and partitions. If we run transmission control
protocol (TCP) over such connections, the throughput of the con-
nection is observed to be extremely poor because TCP treats lost or
delayed acknowledgments as congestion. In this paper, we present
an approach where we implement a thin layer between Internet
protocol and standard TCP that corrects these problems and main-
tains high end-to-end TCP throughput. We have implemented our
protocol in FreeBSD, and in this paper, we present results from ex-
tensive experimentation done in anad hocnetwork. We show that
our solution improves TCPs throughput by a factor of 2–3.

Index Terms—Mobile, network, reliable, wireless.

I. INTRODUCTION

A D HOC NETWORKS are multihop wireless networks
consisting of a (large) number of radio-equipped nodes

that may be as simple as autonomous (mobile or stationary)
sensors to laptops mounted on vehicles or carried by people.
These types of networks are useful in any situation where
temporary network connectivity is needed, such as in disaster
relief or in the battlefield. Recent work has concentrated on
developing MAC layer protocols and routing protocols for these
types of networks (see, e.g., [8]–[11]). In this paper, we turn
our attention to the transport layer and implement a solution
that enables transmission control protocol (TCP) to function
efficiently in the lossyandpartition prone ad hocnetworking
environment. Before discussing the challenges involved in
making TCP perform well inad hocnetworks, however, let us
consider some of the idiosyncrasies of this environment.

In addition to a high bit-error rate (BER) in mobilead hoc
networks, node connectivity tends to change over time. The rate
at which the connectivity changes depends on the number of
nodes, their velocity, transmission range, and obstacles in the
environment that may create shadows. There are two effects of
this change in node connectivity. First, nodes may need tore-
compute routesto some destinations. In Fig. 1(a), nodeneeds
to recompute its route to for an ongoing TCP connection be-
cause node moved out of range of node. Second, It is likely
that thead hocnetwork may be temporarilypartitioneddue to
node mobility. In Fig. 1(b), has an open TCP connection to
. The network gets partitioned at time causing and

to lie in different partitions. The network eventually reconnects
15 seconds later, allowingand to continue communicating.

Manuscript received November 3, 1999; revised May 17, 2000. This work
was supported by the National Science Foundation under Grant NCR-9706080.

J. Liu was with Oregon State University, Corvallis, OR 97331 USA. He is
currently with SUN Microsystems, Palo Alto, CA 94303 USA.

S. Singh was with Oregon State University, Corvallis, OR 97331 USA. He is
currently with the Department of Computer Science, Portland State University,
Portland, OR 97201 USA.

Publisher Item Identifier S 0733-8716(01)04712-6.

Unfortunately, this change in node connectivity has disastrous
consequences for TCPs throughput which can drop to very low
levels. This is explained further in the following sections.

A. Problem with TCP inAd Hoc Networks

TCP is a connection-oriented transport layer protocol that
provides reliable, in-order delivery of data to the TCP receiver.
If we use TCP without any modification in mobilead hocnet-
works, we experience a serious drop in the throughput of the
connection. There are several reasons for such a drastic drop in
TCP throughput and in this section we examine these reasons in
some detail.

Effect of a High BER:Bit errors cause packets to get cor-
rupted which result in lost TCP data segments or acknowledg-
ment. When acknowledgment do not arrive at the TCP sender
within a short amount of time [the retransmit timeout (RTO)],
the sender retransmits the segment, exponentially backs off its
retransmit timer for the next retransmission, reduces its conges-
tion control window threshold, andcloses its congestion window
to one segment. Repeated errors will ensure that the congestion
window at the sender remains small resulting in low throughput
[1], [3]. It is important to note that error correction may be used
to combat high BER but it will waste valuable wireless band-
width when correction is not necessary.

Effect of Route Recomputations:When an old route is no
longer available [as in Fig. 1(a)], the network layer at the sender
attempts to find a new route to the destination [in dynamic
source routing (DSR) [8] this is done via route discovery
messages while in destination-sequenced distance-vectoring
(DSDV) [11] table exchanges are triggered that eventually
result in a new route being found]. It is possible that discovering
a new route may take significantly longer than the RTO at the
sender. As a result, the TCP sender times out, retransmits a
packet, and invokes congestion control. Thus, when a new route
is discovered, the throughput will continue to be small for some
time because TCP at the sender grows its congestion window
using the slow start and congestion avoidance algorithm. This
is clearly undesirable behavior because the TCP connection
will be very inefficient. If we imagine a network in which route
computations are done frequently (due to high node mobility),
the TCP connection will never get an opportunity to transmit at
the maximum negotiated rate (i.e., the congestion window will
always be significantly smaller than the advertised window size
from the receiver).

Effect of Network Partitions:It is likely that thead hocnet-
work may periodically get partitioned for several seconds at a
time. If the sender and the receiver of a TCP connection lie in
different partitions, all the sender’s packets get dropped by the
network resulting in the sender invoking congestion control. If
the partition lasts for a significant amount of time (say, several
times longer than the RTO), the situation gets even worse be-

0733–8716/01$10.00 © 2001 IEEE

LIU AND SINGH: ATCP: TCP FOR MOBILEAD HOCNETWORKS 1301

Fig. 1. Problems caused due to node mobility.

cause of a phenomena calledserial timeouts. A serial timeout
is a condition wherein multiple consecutive retransmissions of
the same segment are transmitted to the receiver while it is dis-
connected from the sender. All these retransmissions are, thus,
lost. Since the retransmission timer at the sender is doubled with
each unsuccessful retransmission attempt (until it reaches 64 s),
several consecutive failures can lead to inactivity lasting one or
two minuteseven when the sender and receiver get reconnected.

Effect of Multipath Routing:Some routing protocols (such as
temporally-ordered routing algorithm (TORA) [10]) maintain
multiple routes between source destination pairs, the purpose
of which is to minimize the frequency of route recomputation.
Unfortunately, this sometimes results in a significant number of
out-of-sequence packets arriving at the receiver. The effect of
this is that the receiver generates duplicate acknowledgments
(ACKs) which cause the sender (on receipt of three duplicate
ACKs) to invoke congestion control.

What Does Congestion Window (CWND) Really Mean in Ad
Hoc Networks?:The congestion window in TCP imposes an
acceptable data rate for a particular connection based on conges-
tion information that is derived from timeout events as well as
from duplicate ACKs. In anad hocnetwork, since routes change
during the lifetime of a connection, we lose the relationship be-
tween the CWND size and the tolerable data rate for the route. In
other words, the CWND as computed for one route may be too
large for a newer route, resulting in network congestion when
the sender transmits at the full rate allowed by the old CWND.

B. Our Approach

The approach we propose in this paper utilizes network layer
feedback (from intermediate hops) to put the TCP sender into
either a persist state, congestion control state, or retransmit state.
Thus, when the network is partitioned, the TCP sender is put
into persist mode so that it does not needlessly transmit and
retransmit packets. On the other hand, when packets are lost due
to error (as opposed to congestion), the TCP sender retransmits
packets without invoking congestion control. Finally, when the
network is truly congested, the TCP sender invokes congestion
control normally.

In our implementation, we did not modify standard TCP itself
because we want to maintain compatibility with the standard
TCP/IP suite. Therefore, to implement our solution, we insert
a thin layer called ATCP (ad hocTCP) between IP and TCP
that listens to the network state information provided by ECN
(explicit congestion notification) messages [5], [6], [12]1 and
by ICMP “Destination Unreachable” messages and then puts
TCP at the sender into the appropriate state. Thus, on receipt of
a “Destination Unreachable” message, TCP state at the sender
is frozen (the sender enters thepersiststate) until a new route
is found ensuring that the sender does not invoke congestion
control. Furthermore, the sender does not send packets into the

1As of this writing, ECN was actively debated on mailing lists, see:
http://www-nrg.ee.lbl.gov/ecn-arch/.

1302 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

network during the period when no route exists between the
source and destination.

We use ECN as a mechanism by which the sender is notified
of impending network congestion along the route followed by
the TCP connection. On receipt of an ECN, the sender invokes
congestion control without waiting for a timeout event (which
may be caused, more often than not, due to lost packets).2

Thus, the benefits our solution are:

• Standard TCP/IP is unmodified.
• ATCP is invisible to TCP and, therefore, nodes with and

without ATCP can interoperate. The only drawback is that
nodes without ATCP will see all the performance prob-
lems associated with running TCP overad hocnetworks.

• ATCP does not interfere with TCPs functioning in cases
where the TCP connection is between a node in the wire-
line network and another in the wirelessad hocnetwork.

The remainder of this paper is organized as follows. In the
next section, we discuss the applicability, toad hocwireless net-
works, of proposed solutions for improving TCP performance
for cellular networks. Section III presents our protocol design
in detail and Section IV discusses some implementation issues.
We study its performance in Section V and summarize our work
in Section VI.

II. L ITERATURE REVIEW

Many papers ([1]–[3], [13]) have been written proposing
methods for improving TCP performance incellular networks
where the last link is the only wireless link in the system. The
typical solution used in these various approaches is tosplit the
connection in two at the base station. The base station then
retransmits packets to the mobile node in order to prevent the
TCP sender located in the wireline network from invoking
congestion control. This approach makes sense because the
base station typically knows the state of the wireless link and
can make intelligent decisions regarding the state of the TCP
connection. In anad hocnetwork, on the other hand, the TCP
connection traverses multiple wireless links. Thus, solutions
based on using the base station to “fix things” cannot work
particularly well.

Reference [7] investigates the impact of link breakage on
TCP performance inad hocnetworks. They use dynamic source
routing (DSR) [8] as the underlying routing protocol (simu-
lated in NS2). DSR is an on-demand routing protocol where a
sender finds a route to the destination by floodingroute request
packets. DSR’s performance is optimized by allowing interme-
diate nodes to respond to route request packets using cached
routes. Unfortunately, if the cached information maintained at a
intermediate node is stale, the time it takes to find a new route
can be very long (several seconds). Thus, TCP running on top of
DSR sees very poor throughput. The paper proposes the use of
explicit link failure notification (ELFN) to improve TCP perfor-
mance. Here, the TCP sender is notified that a link has failed,

2Our decision to use ECN was prompted by the discussions within the Internet
community surrounding the use of ECN in the wired Internet. Most recently,
[12] was proposed as a RFC 2481 (Request For Comment) to the IETF (Internet
Engineering Task Force). As of this writing, ECN is in the experimental stage
within IETF and it is being submitted to advance as proposed standard.

and it disables its retransmission timer and enters a stand-by
mode. In stand-by mode, the TCP sender periodically sends a
packet in its congestion window to the destination. When an
ACK is received, TCP leaves the stand-by mode, restores its re-
transmission timers, and resumes transmission as normal.

Finally, [4] discusses a scheme similar to [7] for improving
TCP performance inad hocnetworks in the presence of failures.
Here, the router detecting a failed route generates a route failure
notification (RFN) packet toward the source. The TCP source
that receives this packet enters asnoozestate which is very sim-
ilar to TCP’s persist state. When the route is reestablished, a
route re-establishment notification (RRN) is sent to the source
by any router on the previous route that detected the new route.
This packet removes the source from the snooze state. In this
method, the source continues using the old congestion window
size for the new route. This is a problem because the congestion
window size is route specific (since it seeks to approximate the
available bandwidth). Reference [4] also does not consider the
effects of congestion, out-of-order packets, and bit error.

Our approach differs significantly from the above proposal
in many ways. First, the above approach does not deal with the
high loss environment present inad hocnetworks. ATCP, on the
other hand, treats loss due to packet loss and loss due to con-
gestion differently. Second, ATCP ensures that the congestion
window is recomputed after every new route recomputation.
References [7] and [4] continue to use the old CWND which
could lead to congestion. Finally, the above approach does not
take into account the possibility of a large number of out of order
packets (if, e.g., the underlying routing protocol was TORA [10]
and not DSR [8]). Thus, we believe that our proposed approach
is far more comprehensive in that it accounts for all possible
sources of inefficiency in TCP.

We summarize the differences between ATCP and the ap-
proaches used in [7] and [4] in Table I. As we can see, ATCP pro-
vides a comprehensive solution to the problem of implementing
TCP inad hocnetworks.

III. D ESIGN OFATCP

Our goal in designing ATCP was to provide a complete so-
lution to the problem of running TCP over multihop wireless
networks. Specifically, we wanted to design a protocol that has
the following characteristics.

1) Improve TCP Performance for Connections set up in ad
hoc Wireless Networks.As we discussed in Section I-A,
TCP performance is affected by the problems of high
BER and disconnections due to route recomputation or
partition. In each of these cases, the TCP sender mis-
takenly invokes congestion control. The appropriate be-
havior in these cases ought to be the following.

• High BER:Simply retransmit lost packets without
shrinking the congestion window.

• Delays due to Route Recomputation:Sender should
stop transmitting and resume when a new route has
been found.

• Transient Partition:As above, the sender should
stop transmitting (because we do not want to flood

LIU AND SINGH: ATCP: TCP FOR MOBILEAD HOCNETWORKS 1303

TABLE I
SUMMARY OF DIFFERENCES

the network with packets that cannot be delivered
anyway) until it is reconnected to the receiver.

• Multipath Routing: In this case, when TCP at the
sender receives duplicate ACKs, it should not in-
voke congestion control because multipath routing
shuffles the order in which packets are received.

2) Maintain TCP’s Congestion Control Behavior.This is an
important goal because if losses are caused due to net-
work congestion, we do not want the TCP sender to as-
sume that these losses were due to high BER and con-
tinue transmitting. In this case, wewantTCP to shrink its
congestion window in response to losses and invoke slow
start.

3) Appropriate CWND Behavior.When there is a change in
the route (e.g., a reconnection after a brief partition), the
congestion window should be recomputed.

4) Maintain End-to-End TCP Semantics.We believe that it
is critical to maintain end-to-end TCP semantics in order
to ensure that applications do not crash.

5) Be Compatible with Standard TCP.This is necessary be-
cause we cannot assume that all machines deployed in an
ad hocnetwork will have ATCP installed. Thus, machines
with or without ATCP should be able to set up normal TCP
connectionswithmachinesthatmayormaynothaveATCP.
Furthermore,applicationsrunningatmachineswithATCP
shouldnotbeawareofATCP’spresence.

Sometimes, it is likely that anad hocnetwork may be con-
nected to wireline networks through access points. In such situ-
ations, the sender or receiver of a TCP connection may lie in the
wireline network with the other end-point in thead hocnetwork.
It is important to ensure that TCP connections work normally in
these cases as well. Our approach to the problem of improving
TCP’s performance whilemaintaining compatibilityis to intro-
duce a thin layer between TCP and IP called ATCP (see Fig. 3).
The ATCP layer at the sender monitors TCP state and spoofs
TCP in a way to ensure that the behavior discussed above is
achieved. We discuss this in more detail in the next section.

A. Functioning of the ATCP Layer

The ATCP layer is only active at the TCP sender(in a du-
plex communication, the ATCP layer at both participating nodes
will be active). This layer monitors TCP state and the state of
the network (based on ECN and ICMP messages) and takes
appropriate action. To understand ATCP’s behavior, consider
Fig. 2 which illustrates ATCP’s four possible states—normal,

Fig. 2. State transition diagram for ATCP at the sender.

Fig. 3. Data flow through the TCP/ATCP/IP stack.

congested, loss,anddisconnected. When the TCP connection is
initially established, ATCP at the sender is in thenormalstate.
In this state, ATCP does nothing and is invisible. Let us now ex-
amine ATCP’s behavior under four circumstances:

• Lossy Channel:When the connection from the sender to
the receiver is lossy, it is likely that some segments will not
arrive at the receiver or may arriveout-of-order. Thus, the
receiver may generateduplicateacknowledgment (ACKs)
in response to out of sequence segments. When TCP re-
ceives three consecutive duplicate ACKs, it retransmits the
offending segment and shrinks the congestion window. It
is also possible that, due to lost ACKs, the TCP sender’s

1304 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

RTO may expire causing it to retransmit one segment and
invoke congestion control.

ATCP in itsnormal statecounts the number of duplicate
ACKs received for any segment. When it sees that three
duplicate ACKs have been received, itdoes not forward
the third duplicate ACK but puts TCP inpersist mode.
Similarly, when ATCP sees that TCP’s RTO is about to
expire, it again puts TCP inpersist mode(implementation
details are discussed in Section IV). By doing this, we en-
sure that the TCP sender does not invoke congestion con-
trol because that is the wrong thing to do under these cir-
cumstances. After ATCP puts TCP in persist mode, ATCP
enters theloss state.

In the loss state, ATCP transmits the unacknowledged
segments from TCP’s send buffer. It maintains its own
separate timers to retransmit these segments in the event
that ACK’s are not forthcoming. Eventually, when anew
ACK arrives (i.e., an ACK for a previously unacknowl-
edged segment), ATCP forward that ACK to TCP which
also removes TCP from persist mode. ATCP then returns
to its normal state.

• Congested:We assume that when the network detects con-
gestion, the ECN flag is set in ACK and data packets. Let
us assume that ATCP receives this message when in its
normal state. ATCP moves into itscongested stateand
does nothing. It ignores any duplicate ACKs that arrive
and it also ignores imminent RTO expiration events. In
other words, ATCP doesnot interferewith TCP’s normal
congestion behavior. After TCP transmits a new segment,
ATCP returns to itsnormal state.

• Disconnected:Node mobility inad hocnetworks causes
route recomputation or even temporary network partition.
When this happens, we assume that the network generates
an ICMPDestination Unreachablemessage in response to
a packet transmission. When ATCP receives this message,
it puts the TCP sender into persist mode and itself enters
thedisconnected state. TCP periodically generatesprobe
packetswhile in persist mode. When, eventually, the re-
ceiver is connected to the sender, it responds to these probe
packets with a duplicate ACK (or a data packet). This re-
moves TCP from persist mode and moves ATCP back into
normal state.

In order to ensure that TCP does not continue using
the old CWND value, ATCP sets TCP’sCWND to one
segment at the time it puts TCP in persist state. The reason
for doing this is to force TCP to probe the correct value of
CWND to use for the new route.

• Other Transitions:Finally, when ATCP is in theloss state,
reception of an ECN or an ICMPSource Quenchmessage
will move ATCP intocongested stateand ATCP removes
TCP from its persist state. Similarly, reception of an ICMP
Destination Unreachablemessage moves ATCP from ei-
ther theloss stateor thecongested stateinto thediscon-
nected stateand ATCP moves TCP into persist mode (if it
was not already in that state).

• Effect of Lost Messages:Note that due to the lossy environ-
ment, it is possible that an ECN may not arrive at the sender
or, similarly, a “Destination Unreachable” message may be

lost. IfanECNmessage is lost, theTCPsenderwill continue
transmitting packets.However, every subsequent ACKwill
contain the ECN, thus ensuring that the sender will eventu-
ally receive the ECN causing it to enter the congestion con-
trol state as it is supposed to. Likewise, if there is no route to
the destination, the sender will eventually receive a retrans-
missionof the “DestinationUnreachable”messagecausing
TCPtobeputintothepersiststatebyATCP.Thus,inallcases
of lostmessages,ATCPperformscorrectly.

Let us examine how ATCP changes TCP’s behavior under
the conditions discussed in Section I-A. Under lossy condi-
tions (due to high BER), ATCP retransmits unacknowledged
segments while TCP is put into persist state. Thus, TCPdoes
not invoke congestion control. In the event that the source
and the destination get disconnected (either for short periods
of time while a new route is computed or for longer periods
due to partition), TCP is again put into persist mode for the
duration of the disconnection and no segments are transmitted
by ATCP. When the network is reconnected, TCP automatically
comes out of persist mode because the receiver responds to the
sender’s probe packets. However, the congestion window used
in this case is one segment initially. Finally, TCP’s congestion
behavior is unchanged ensuring that TCP appropriately throttles
back its transmission rate when the network is congested.

Finally, we need to make a comment regarding ATCP’s be-
havior when the connection traverses the fixed Internet. There
are two cases to consider. If the fixed internet does implement
ECN, ATCP will operate correctly. If, however, the fixed in-
ternet does not implement ECN, then we need tosplit the con-
nection at the node that connects the wireless network with the
wired internet. Thus, there will be two conjugated TCP connec-
tions (this is similar to I-TCP [1] for cellular networks).

B. Benefits of our Approach

How does the ATCP meet our design goals outlined earlier
in this section? It is clear that theperformanceof ATCP will
be better than TCP as we discuss in Section V. Similarly,
end-to-end TCP semantics are maintained because ATCP does
not generate ACKs on its own. The only time when ATCP
inserts itself in the data path is when it is in theloss state. Here,
ATCP retransmits unacknowledged segments from TCP’s
buffer. However, even in this case, ATCP forward the first new
ACK to TCP (thus removing TCP from persist mode) and
returns itself to thenormal state. This behavior does not affect
end-to-end semantics of the connection.

C. Discussion of Some Design Decisions

In our design of the ATCP protocol, we rely on explicit no-
tification regarding congestion and disconnections to make our
protocol work. This choice, we feel, is justified because of the
unique nature of thead hocnetworking environment. In the In-
ternet, TCP relies on timeouts or duplicate ACKs to inform it
of network congestion. Unfortunately, in the hostilead hocnet-
working environment, packet losses are frequently a result of
high BERs (caused by fading, interference, or jamming) or net-
work partition. The correct behavior in the presence of loss due
to bit error is to retransmit the lost packets without reducing the
transmission rate. In the case of network partition, the correct

LIU AND SINGH: ATCP: TCP FOR MOBILEAD HOCNETWORKS 1305

behavior is to stop all transmission until the network is recon-
nected (i.e., stop the flow on the periphery of the network). As is
clear from our discussion above, ATCP relies on ECN messages
to enable it to determine when the network is congested and on
“Destination Unreachable” messages to inform it when the net-
work is partitioned or no route exists. Finally, we chose not to
use SACKs because the delaybandwidth product inad hocnet-
works is small (i.e., the transmit window sizes are small) and,
thus, SACKs would contribute little in terms of performance
while requiring additional processing at the sender and receiver
(we have not considered energy consumption in this paper but
minimizing the processing involved is important to increase the
life of the battery).

IV. I MPLEMENTATION OF ATCP

We implemented ATCP as a layer between TCP and IP, see
Fig. 3. Function atcp_input() intercepts every packet IP passes
up to TCP. It examines the TCP and IP headers of the packet
and finds out to which TCP connection this packet is sent by
locating the TCP control block according to the packet’s source
and destination addresses and port numbers (see Fig. 5).

Let us look at ATCP’s behavior in thenormal state. In this
state, atcp_input() first checks if the ECN has been set (also
see Fig. 5). If the ECN bit is set to one (1), atcp_input()
sets ATCP state tocongestedand then passes the segment to
function tcp_input(). Upon receiving the ECN, TCP will start
congestion control algorithms because a network traffic con-
gestion has been detected by a router somewhere between the
sender and the receiver. Function atcp_output() takes ATCP
back tonormal statefrom congested statewhen TCP sends
out a packet.

If the ECN flag is not set, atcp_input() counts the number of
duplicate ACKs received and puts TCP into persist mode if it has
received tcprexmtthresh number of duplicate ACKs (the default
value of tcprexmtthresh is 3). ATCP itself enters thelossstate
and processes the segment. Another case in which ATCP enters
thelossstate (and puts TCP in persist) occurs when TCP’s RTO
is about to expire.

ATCP checks TCP/ATCP timers (see Fig. 4) by calling
atcp_slowtimo() every 500 ms. Function atcp_slowtimo() is
registered in the inetsw struct which also holds atcp_input(),
atcp_fasttimo(), etc. In thenormal state, if atcp_slowtimo()
finds out that a timeout is about to happen, it will call func-
tion atcp_timers() for processing. atcp_timers() will adjust
the retransmission timeout value, stop the RTT timer, call
tcp_output() to resend the timed out packet, put TCP into
persist mode, and then change ATCP state toloss(see Fig. 4).

In the loss state (see Fig. 7), ATCP performs packet re-
transmission on behalf of TCP (see Fig. 6). In order to do
this correctly, ATCP copies member variable snd_cwnd in
TCPs TCP control block into member variable asnd_cwnd in
the control block. atcp_output() will use asnd_cwnd instead
of snd_cwnd when retransmitting segments. In addition to
asnd_cwnd of type u_long, we added at_status of type int and
at_timer[TCPT_NTIMERS] of type int in TCP control block.
as_status is used to hold ATCP state—normal, loss, congested,
anddisconnected. at_timer is used for ATCP timers (including

Fig. 4. Flowchart for function atcp_timer().

the retransmit timer used by ATCP when retransmitting packets
from TCP’s buffer). One other noteworthy feature of theloss
state is that atcp_output() discards TCP’s persist probe packets
(unlike the case when ATCP is in thedisconnectedstate) in
order to maintain the efficiency of the connection.

When receiving a packet from IP, atcp_input() examines if it
contains either a new ACK or new data from the other end of
the connection. In either case, atcp_input() will take TCP out
of persist mode and change ATCP state tonormal from loss
state. If, after taking TCP out of persist mode, ATCP’s con-
gestion window size is greater than TCP’s congestion window
size, TCP’s congestion window size is set to ATCP’s congestion
window size.

Function atcp_notify() is called when an ICMP_UN-
REACH_NET icmp message is received. This causes ATCP
to change its state todisconnectedfrom either ofnormal, loss
or congested. atcp_notify() stops TCP’s retransmission timer,
sets TCP’s receiver advertised window size to zero (0), starts
TCP’s persist timer, sets the congestion window to one (1)
segment, and puts TCP into persist mode. Indisconnected
state, atcp_output() simply passes TCP persist probes to IP and
atcp_input() passes packets from IP to TCP until atcp_output()
catches a nonprobing packet from TCP (see Fig. 6). Function
atcp_output() will put ATCP back intonormal state upon
receiving such a packet from TCP. The fact that TCP sent
a nonprobe packet implies that TCP came out of persist in
response to a packet forwarded by ATCP—thus ATCP does not
have to explicitly remove TCP from persist mode.

When TCP comes out of persist mode, it will have a conges-
tion window of justone segment. There are a few reasons for

1306 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

Fig. 5. Flowchart for function atcp_input().

doing this. When route failure occurs due to a network partition
or if the old route is no longer valid, the network layer will try to
find a new route (a process that may take several seconds).3 If
we continue using the previous congestion window for the new
route, it may result in congestion at some intermediate hop. It is
also possible that the new found route may go through a almost
congested region because not every proposed routing protocol
takes traffic into account. Based on these considerations, ATCP
sets TCP congestion window to one segment upon Destination
Unreachable ICMP messages so that when TCP resumes trans-
mission, it will invokeslow startalgorithm.

We note that the overhead of implementing ATCP consists of
the following:

• ATCP timers including timers for fast timeout and retrans-
mission timers.

• Data structures including CWND size, status control
blocks, and one additional control block to maintain the
current ATCP state information.

3When a route is no longer valid, the network layer attempts to find new
routes. However, it is possible that some nodes may respond to the request for a
new route with stale cached routes. This causes additional delay in some routing
protocols such as DSR [8].

• Functions including atcp_input(), atcp_output(),
atcp_slowtimo(), atcp_timers(), atcp_fasttimo, and
atcp_notify().

In all, ATCP code is approximately 2000 lines long with
the bulk of the contribution coming from atcp_input() and
atcp_output().

V. PERFORMANCESTUDY

We implemented ATCP in the FreeBSD kernel, and in this
section, we discuss the performance of our implementation. Our
goal in running the various experiments was to examine ATCP’s
performance in the presence of bit error, network partition, and
congestion. Specific questions we looked at included:

1) What is the effect of high bit error on ATCP performance?
How does ATCP perform when the wireless bandwidth
is low? How does ATCP performance scale with varying
RTT values?

2) How does multipath routing affect ATCP’s performance
in relation to TCP?

3) Does ATCP perform correct congestion control when net-
work congestion occurs?

LIU AND SINGH: ATCP: TCP FOR MOBILEAD HOCNETWORKS 1307

Fig. 6. Flowchart for function atcp_output().

Fig. 7. Flowchart for ATCP transition betweennormalandlossstates.

4) How does ATCP perform, in relation to plain TCP, inad
hoc networks where there are frequent short disconnec-

tions? How does ATCP deal with cases where network
partitions occur during file transfer?

1308 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

Fig. 8. ATCP and TCP performance in the presence of bit error only.

In order to evaluate the performance of our protocol, we used
an experimental testbed consisting of five Pentium PCs, each of
which had two ethernet cards. This gives us a four hop network
where the traffic in each hop is isolated from the other hops.
To model the lossy and low-bandwidth nature of the wireless
links, we emulated, in IP, a 32-kb/s channel over each hop.4 We
modified the IP code as follows. All calls to ip_output() are in-
tercepted and then, based on the link speed and packet size (in-
cluding TCP and IP headers), a timer is set to go off each time
a packet can be sent on the wireless link. At each timeout, one
packet is removed from a link queue and ip_output() is called
normally. In addition to the link bandwidth, the modified IP
code also allowed us to introduce bit errors in the packets during
transmission. We used a BER of for all experiments. We
also introduced hop-by-hop delays by the simple mechanism
of delaying ip_input() by some amount of time at each hop.
For instance, to have a 20-ms average delay on a link, we gen-
erate a uniform random number between 10 ms and 30 ms. That
number is then converted into an integer that specifies a timeout
value. Thus, ip_input() is called when this timer expires. Net-
work partition occurs at an intermediate hop in our setup. This
host periodically thinks that its next hop is no longer valid (this
is again implemented by using a timer in IP), thus causing ICMP
to generate the appropriate host unreachable message. Network
congestion is made to occur at some intermediate host as well by
flooding that host with spurious packets (generated by a process
running on that host). This results in the generation of an explicit
congestion notification (ECN).

4Emulating the wireless link in this manner gives us precise control over the
available wireless bandwidth, disconnection events, etc.

For each data point in our graphs, we use twenty (20) mea-
surements and compute 90% confidence intervals (that are also
plotted).

A. Loss Case

The first experiments we ran did not include partition or con-
gestion events. The connection was only subjected to bit error
that occurred at a BER of at each hop. We measured the
time taken to transfer a one-MB file when using plain TCP and
when using ATCP. In Fig. 8, we plot the transfer time (in sec-
onds) on the axis and the mean hop-by-hop delay on theaxis.
It is interesting to note that the time taken by TCP to transfer the
file increases almost linearly from 900 to 1900 s with increasing
hop-by-hop delays. On the other hand, the time taken by ATCP
is almost constant at approximately 425 s. It is instructive to per-
form a rough computation to explain the425 s transfer time
for ATCP. At a BER of , we have a end-to-end probability
of packet loss of approximately 3.2% (100 byte packets). Since
the raw bandwidth of the connection is 32 kb/s, we get an up-
perbound of 31 kb/s for the actual bandwidth. This bandwidth is
shared by the data packets as well as by ACK traffic (data is only
transferred in one direction). Thus, the bandwidth available for
data is 22.1 kb/s (data size is 100 bytes and ACKs are 40 bytes
long). Thus, in the absence of any timer or other protocol over-
head, it should take approximately 361 seconds to transfer the
one megabyte file. It is interesting to note that ATCP is fairly
close to this limit.

The difference in behavior between TCP and ATCP is illus-
trated in the sequence number versus time plots shown in Figs. 9
and 10. In the case of TCP, lost packets or ACKs result in TCP

LIU AND SINGH: ATCP: TCP FOR MOBILEAD HOCNETWORKS 1309

Fig. 9. TCP trace in the presence of bit error only.

timeout (the long, almost horizontal lines between 17.5 and 18.5
s and between 19 and 20 s) and retransmission. In addition, three
duplicate ACKs result in retransmission as well (at time 16.5 s
and again at time 17.25 s where the curve drops sharply). In all of
these cases, TCP shrinks its congestion window, thus resulting
in low throughput (see Fig. 11). In the case of ATCP, on the other
hand,weneverseeaTCPtimeout.This isbecauseATCPputsTCP
into persist mode and retransmits the unacknowledged packet.
Likewise, we observe thatATCP retransmits packets uponseeing
three duplicate ACKs (see times 19.45 and 19.6 s where the curve
dropssharply).

This dramatic difference in performance between TCP and
ATCP can be explained by the fact that TCP invokes conges-
tion control frequently during the experiment because of lost
packets or duplicate ACKs. TCP uses slow start to increase its
transmit window. ATCP, on the other hand, puts the TCP sender
in persist mode and retransmits the packet whose retransmit
timer was about to expire. Figs. 12 and 11 illustrate the typical
behavior of the congestion window for TCP and ATCP (these
graphs are snapshots of a random time period and are not re-
lated to Figs. 9 and 10 directly). In these graphs, we plot the
congestion window size for consecutive packet transmissions.
TCP’s congestion window never really has an opportunity to
grow in size because losses due to bit error result in conges-
tion control.5 ATCP’s congestion window, on the other hand,
never shrinks. This accounts for the dramatic difference in TCP

5It is noteworthy that in Figs. 11 and 12, we see the effect of timeouts (where
the congestion window shrinks to 100 bytes) as well as the effects of duplicate
ACKs (where the window is cut in half and grows linearly from that point on)
on TCP’s congestion window.

and ATCP performance illustrated in Fig. 8. Finally, the linear
increase in transfer time for plain TCP with increasing RTT is
explained by the fact that TCP’s congestion window remains
small making TCP behave almost like a stop-and-wait protocol.
Thus, as the RTT increases, so does the transfer time.

B. Congestion Case

In the next set of experiments, we introduced periodicconges-
tion in the network every five seconds. In order to congest the in-
termediate node, a local source dumps packets into ip_output()
for a period of 200 ms. In Fig. 13, we plot the transfer time
for a one-MB file as a function of mean hop-by-hop delay (the
BER is). We notice that the file transfer time for TCP in-
creases from about 1200 s to almost 3000 s while ATCP’s file
transfer time increases from approximately 460 s to about 500
s. Again, we can perform some rough calculations to determine
the minimum time it takes to transfer the file in the presence of
congestion. As before, it takes a minimum of 361 s to transfer
the file in the absence of congestion. Since congestion occurs
every 5 s for a period of 200 ms, we will have approximately 80
congestion events during the file transfer each lasting 200 ms.
Thus, the additional file transfer time (assuming no data can be
transferred during congestion) is 16 s for a total time of 377 s.
As before, it is interesting to note that ATCP’s file transfer time
is quite close to this minimum.

There are a couple of reasons for the difference in perfor-
mance between ATCP and TCP. First, the number of timeout
events in TCP is high because of the high bit error as well as
the loss due to congestion. Thus, TCP does not get much of an

1310 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

Fig. 10. ATCP trace in the presence of bit error only.

Fig. 11. TCP congestion windows in the presence of bit error only.

opportunity to grow its congestion window. ATCP, on the other
hand, defers to TCP’s congestion controlonly whenit receives

an ECN message. In other cases, it enters the loss state and re-
transmits the lost packets from TCP’s buffer. The slight increase

LIU AND SINGH: ATCP: TCP FOR MOBILEAD HOCNETWORKS 1311

Fig. 12. ATCP congestion windows in the presence of bit error only.

Fig. 13. ATCP and TCP performance in the presence of bit error and congestion.

1312 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

Fig. 14. ATCP and TCP performance in the presence of bit error and partition.

in transfer time for ATCP as a function of hop-by-hop delay is
caused because the round trip time affects the rate at which the
congestion window can be grown. The effect of this is more pro-
nounced in the case of TCP because TCP invokes congestion
control very often.

C. Partition Case

In this section, we consider the case when the network suffers
periodic partitions. For our experiments, a network partition oc-
curs every five minutes (at an intermediate node), and the parti-
tion lasts for one minute. Fig. 14 plots the file transfer time for a
one-MB file as a function of hop-by-hop delay. The transfer time
for ATCP is almost constant at a little over 500 s while TCP’s
file transfer time increases with hop-by-hop delay. It is easy to
explain ATCP’s time if we refer back to Fig. 8. The transfer
time for ATCP in the presence of loss only is about 425 s. If
the network gets partitioned every five minutes (i.e., every 300
seconds) for one minute, we expect the transfer time to increase
by at least the length of the partition, which is 60 s. Note that
ATCP puts TCP into persist mode upon receiving the ICMP des-
tination unreachable message. In persist mode, TCP generates
probe packets at exponentially increasing intervals (starting at
two seconds) up to a maximum interval of 60 s. The effect of
this behavior is that the sender does not realize that the network
is connected until it sends out the next probe packet. In the worst
case, this may happen anywhere from 32 s to 60 s after recon-
nection! This brings the total transfer time for ATCP to 425 s

60 s (partition time) 32 s (time to realize the network is
no longer partitioned) 517 s. TCP’s poor behavior is caused

because of the high error (see Fig. 8) as well as serial timeout
behavior when the network is partitioned.

We also plot the delays for ATCP and TCP for transferring a
200-KB file when network partitions happen every ten minutes
and last for five minutes (see Fig. 15). Our purpose here is to in-
vestigate TCP and ATCP performance when the network experi-
ences long network partitions. As in the short network partition
case, delays for ATCP almost remain a constant while delays for
ATCP grow linearly as the hop-to-hop delay increases.

D. Packet Reordering

Packet reordering may happen when there aremultiple routes
available from the source to the destination or whenroute re-
computingoccurs. When a router has more than one outgoing
interface that leads to the same destination, it can distribute in-
coming packets among those different interfaces provided that
the packets are going to that same destination. These packets
may, therefore, arrive at the destination out of order because
they have taken different routes. Another reason for packet re-
ordering is route recomputation. This happens when a router
fails to locating an outgoing route to forward a packet. Inad
hocwireless networks, route failure occurs frequently. Packets
in the previous route and those that take the new route may reach
their destination in a different order, see Fig. 16.6

6Current routing protocols forad hocnetworks take a substantial amount of
time to find new routes. Consequently the packets that have been sent before the
rerouting may have ample time to reach their destination before a new route is
found. Thus, we believe that packet retransmission because of packet loss due
to link error is the major reason for packet reordering, not route recomputation.

LIU AND SINGH: ATCP: TCP FOR MOBILEAD HOCNETWORKS 1313

Fig. 15. ATCP and TCP performance in the presence of bit error and larger partition.

Fig. 16. Route recomputation causes packet reordering.

In our experiment, we simulate packet reordering as follows.
We set a timer to expire every 25 s on one of the intermediate
hosts. The next four packets are then inserted into the front
of the packet queue when the timer expires. Fig. 17 plots the
transfer time needed by TCP and ATCP for a one-MB file. TCP
needs much more time to transfer the same amount of data than
ATCP does. The amount of time needed for ATCP remains al-
most a constant around 425 s while the transfer time for TCP
increases (approximately) linearly from around 940 to 2010 s
as the hop-to-hop delay increases from 10 to 50 ms. The reason
for this difference is that ATCP puts the TCP sender into persist

mode when it receives three consecutive duplicate acknowledg-
ment. On the other hand, TCP will start congestion control al-
gorithms resulting in a substantially smaller congestion window
and slow congestion window growth.

E. Putting the Pieces Together

Finally, we wanted to compare the performance of ATCP and
TCP in a network which experiencedall of the effects of network
partition, multipath routing, congestion and bit error, together.
We continue to use for the BER. Network partition oc-
curs, as before, every five minutes and lasts for one minute. In-

1314 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 7, JULY 2001

Fig. 17. ATCP and TCP performance in the presence of bit error and packet reordering.

Fig. 18. TCP and ATCP transfer time for one-MB data in the general case.

terfering traffic is generated at a rate of eight packets/sec in one
experiment and 16 packets/sec in another (100 byte packets) by

each intermediate hop with the exception of the sender and re-
ceiver.

LIU AND SINGH: ATCP: TCP FOR MOBILEAD HOCNETWORKS 1315

After recovering from a network partition in a real network,
we expect the round-trip time (rtt) as well as the bandwidth to
change. To simulate the change in bandwidth, we modify the
bandwidth at one intermediate hop each time a partition ends.
The bandwidth at that hop can be either 16 kb/s, 24 kb/s, or 32
kb/s. If the bandwidth before partition was 32 kb/s, after recon-
nection, either of 16 or 24 kb/s is selected randomly, and so on.
To simulate the change in rtt values, we do the same thing as for
the bandwidth. Say the hop delay of the chosen hop was in the
range [10–30] ms before partition. After partition, the delay for
that hop is randomly set to lie in either a [60–80] ms range or
in a [100–120] ms range. Thus, the bandwidth as well as the rtt
changes after each partition.

Fig. 18 illustrates the performance of TCP and ATCP for
transferring a one-MB file for two values of interfering traffic.
We see aone-thirdreduction in transfer time for ATCP as com-
pared with TCP in both cases. The reasons for this have been
discussed earlier but it highlights the effectiveness of our solu-
tion.

VI. CONCLUSION

In this paper, we presented a solution to the problem of run-
ning TCP inad hocwireless networks. Our solution is to imple-
ment a thin layer between IP and TCP (called ATCP) that en-
sures correct TCP behavior while maintaining high throughput.
This is done by putting TCP into persist mode when the net-
work is disconnected or when there are losses due to high bit
error. The highlights of ATCP are the following.

1) End-to-end TCP semantics are maintained.
2) ATCP is transparent which means that nodes with and

without ATCP can set up TCP connections normally.
3) ATCP’s performance is almost ideal as measured by the

time to transfer large files.
4) ATCP does not interfere with TCP’s congestion control

behavior when there is network congestion.

We believe that our solution is almost ideal forad hocnetworks
as demonstrated by the performance results shown above.

REFERENCES

[1] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,”
in Proc. 15th Int. Conf. Distributed Computing Systems, Vancouver, BC,
Canada, June 1995, pp. 136–143.

[2] H. Balakrishnan, S. Seshan, and R. Katz, “Improving reliable transport
and handoff performance in cellular wireless networks,”Wireless Net-
works, vol. 1, no. 4, Dec. 1995.

[3] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,”
ACM Comput. Commun. Rev., vol. 27, no. 5, pp. 19–43, 1997.

[4] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A feed-
back-based scheme for improving TCP performance inad hocwireless
networks,” inProc. 18th Int. Conf. Distributed Computing Systems, Am-
sterdam, The Netherlands, May 26–29, 1998, pp. 474–479.

[5] S. Floyd, “TCP and explicit congestion notification,”ACM Comput.
Commun. Rev., vol. 24, no. 5, pp. 10–23, Oct. 1994.

[6] J. H. Salim and U. Ahmed, “Performance evaluation of explicit conges-
tion notification (ECN) in IP networks,”, RFC 2884, July 2000.

[7] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile
ad hocnetworks,” inProc. ACM Mobile Communications Conf., Seattle,
WA, August 15–20, 1999, pp. 219–230.

[8] D. B. Johnson and D. A. Maltz, “Dynamic source routing inad hoc
wireless networks,” inMobile Computing, T. Imielinski and H. F. Korth,
Eds. Norwell, MA: Kluwer, 1996, pp. 153–191.

[9] P. Karn, “MACA—A new channel access method for packet radio,” in
ARRL/CRRL Amateur Radio 9th Computer Networking Conf., London,
ON, Canada, Sept. 1990, pp. 134–140.

[10] V. D. Park and M. S. Corson, “A highly adaptive distributed routing algo-
rithm for mobile wireless networks,” inProc. IEEE INFOCOM, Kobe,
Japan, Apr. 1997, pp. 1405–1413.

[11] C. E. Perkins and P. Bhagwat, “Routing over multi-hop wireless network
of mobile computers,” inMobile Computing, T. Imielinski and H. F.
Korth, Eds. Norwell, MA: Kluwer, 1996, pp. 183–205.

[12] K. K. Ramakrishnan and S. Floyd, “A proposal to add explicit conges-
tion notification (ECN) to IP,”, (Status: Experimental), Jan. 1999.

[13] R. Yavatkar and N. Bhagawat, “Improving end-to-end performance of
TCP over mobile internetworks,” inIEEE Workshop Mobile Computing
Systems and Applications, Santa Cruz, CA, Dec. 1994, pp. 146–152.

Jian Liu (M’97) received the Ph.D. degree in com-
puter science from the University of South Carolina,
Columbia, in 1999.

He is currently with SUN Microsystems, Cleve-
land, OH. His research interests have been in the
area of transport layer protocol design forad hoc
networks.

Suresh Singh(M’93) received the B. Tech. degree in
computer science from the Indian Institute of Tech-
nology, Kanpur, in 1984. He subsequently received
the Ph.D. in computer science from the University of
Massachusetts, Amherst, in 1990.

He is currently an Associate Professor with
the Computer Science Department, Portland State
University, Portland, OR. His research interests
are in the areas of mobile computing, protocol
design and evaluation, performance modeling and
energy aware computation, and communication. His

research has been funded by NSF, DARPA, ONR, and several companies.
Dr. Singh is a Member of the ACM.

