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Abstract

An on-demand routing protocol for wireless ad hoc networks is one
that searches for and attempts to discover a route to some destination
node only when a sending node originates a data packet addressed
to that node. In order to avoid the need for such a route discovery to
be performed before each data packet is sent, such routing protocols
must cache routes previously discovered. This paper presents an
analysis of the effects of different design choices for this caching in
on-demand routing protocols in wireless ad hoc networks, dividing
the problem into choices of cache structure, cache capacity, and
cache timeout. Our analysis is based on the Dynamic Source Routing
protocol (DSR), which operates entirely on-demand. Using detailed
simulations of wireless ad hoc networks of 50 mobile nodes, we
studied a large number of different caching algorithms that utilize a
range of design choices, and simulated each cache primarily over a
set of 50 different movement scenarios drawn from 5 different types
of mobility models. We also define a set of new mobility metrics that
allow accurate characterization of the relative difficulty that a given
movement scenario presents to an ad hoc network routing protocol,
and we analyze each mobility metric’s ability to predict the actual
difficulty in terms of routing overhead experienced by the routing
protocol across the scenarios in our study.

1. Introduction

Caching is an important part of any on-demand routing protocol for
wireless ad hoc networks. In an ad hoc network [10, 6], all nodes
cooperate in order to dynamically establish and maintain routing in
the network, forwarding packets for each other to allow communica-
tion between nodes not directly within wireless transmission range.
Rather than using the periodic or background exchange of routing in-
formation common in most routing protocols, an on-demand routing
protocol is one that searches for and attempts to discover a route to
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some destination node only when a sending node originates a data
packet addressed to that node. In order to avoid the need for such a
route discovery to be performed before each data packet is sent, an
on-demand routing protocol must cache routes previously discov-
ered. Such caching then introduces the problem of proper strategies
for managing the structure and contents of this cache as nodes in
the network move in and out of wireless transmission range of one
another, possibly invalidating some cached routing information.

Several routing protocols for wireless ad hoc networks have
used on-demand mechanisms, including TORA [14], DSR [9],
AODV [15], ZRP [4], and LAR [11]. For example, in the Dynamic
Source Routing protocol (DSR) [1, 8, 9] in its simplest form, when
some node S originates a data packet destined for a node D to which S
does not currently know a route, S initiates a new Route Discovery
by beginning a controlled flood of a request packet through the
network. When a copy of this request packet reaches either D or
another node that has a cached route to D, this node then returns to S
the route discovered by this request.

Performing such a Route Discovery can be an expensive oper-
ation, since it may cause a large number of request packets to be
transmitted, and since it adds latency to the subsequent delivery of
the data packet that initiated it, but this Route Discovery may also
result in the collection of a large amount of information about the
current state of the network that may be useful in future routing deci-
sions. In particular, S may receive a number of replies in response to
its Route Discovery flood, each of which returns information about a
route to D through a different portion of the network; a node may also
learn information about the state of the network by eavesdropping
on the Route Discovery packets from other nodes. By caching and
making effective use of this collected network state information, the
amortized cost of Route Discoveries can be reduced and the overall
performance of the network can be significantly improved.

In this paper, we analyze the effects of different design choices
in caching strategies for on-demand routing protocols in wireless
ad hoc networks. These design choices generally fall into three
areas: cache structure, cache capacity, and cache timeout. For
a wide range of different caching algorithms based on these design
choices, we evaluate their effect on the ability of the routing protocol
to successfully route packets to different destinations, the number
of overhead packets generated by the routing protocol, the average
latency required to deliver data packets, and the optimality of the
routes used relative to the shortest route that physically existed at
the time each packet was sent. Our evaluation in this paper is based
on the caching behavior in the Dynamic Source Routing protocol
(DSR) [1, 8, 9], although many of the results presented here we



believe can be generalized to apply to other on-demand wireless
ad hoc network routing protocols as well.

To evaluate the effects of the different caching design choices,
we performed a set of detailed simulations of wireless ad hoc net-
works of 50 mobile nodes, with realistic modeling of factors such
as medium access control and contention, collisions, wireless signal
strength and propagation delay, carrier sense, and capture effect [2],
based on our extended version of the ns-2 network simulator [3].
We simulated each of the caching algorithms primarily over a set
of 50 different movement scenarios drawn from 5 different types of
mobility models. To better characterize the relative difficulty that
each movement scenario presents to the routing protocol, we utilize a
set of mobility metrics, including the geometric metric presented by
Johansson et al [7] and several improved metrics that we define here.

Section 2 of this paper gives an overview of the basic operation
of the DSR protocol. In Section 3, we discuss the caching strategy
design choices considered in the paper, and in Section 4, we describe
the specific caching algorithms based on these choices that we used
in our evaluation. In Section 5, we describe the methodology of our
simulation study, including our simulator features, the performance
metrics we evaluated, and the communication model we used. In
Section 6, we define several mobility metrics and describe a num-
ber of mobility models, and we show the correlation between the
mobility metrics of a scenario and the performance of DSR in that
scenario. In Section 7, we present the cache performance results of
this study, and in Section 8, we present conclusions.

2. Overview of the DSR Protocol

We use the Dynamic Source Routing protocol (DSR) [1, 8, 9] in this
paper to illustrate the effects of different caching strategies in on-
demand routing protocols, since DSR operates entirely on-demand
and thus clearly shows the caching behavior. DSR is composed
of two mechanisms that work together to allow the discovery and
maintenance of source routes in the ad hoc network. Route Discov-
ery is the mechanism by which a node S wishing to send a packet to
a destination node D obtains a source route to D. Route Discovery
is used only when S attempts to send a packet to D and does not
already know a route to D. Route Maintenance is the mechanism
by which node S, while using a source route to D, is able to detect
when the network topology has changed such that it can no longer
use its route to D because a link along the route no longer works.
When Route Maintenance indicates a source route is broken, S can
attempt to use any other route it happens to know to D, or can invoke
Route Discovery again to find a new route for subsequent packets
that it sends. Route Maintenance is used only when S is actually
sending packets to D. This section describes the basic operation of
Route Discovery and Route Maintenance, although a number of op-
timizations to this basic operation exist [1, 9] that are not discussed
here due to space limitations.

To initiate a new Route Discovery for a node D (the target of the
Route Discovery), S transmits a ROUTE REQUEST packet, which is
received by other nodes located within direct wireless transmission
range of S. Each node that receives the ROUTE REQUEST packet
appends its own address to a record in the packet and rebroadcasts
it to its neighbors, unless it has recently seen another copy of the
ROUTE REQUEST for this Route Discovery or it finds that its address
was already listed in the route record in the packet. The forwarding
of the ROUTE REQUEST terminates when it reaches node D; this
node then returns a ROUTE REPLY packet to S, giving a copy of the
accumulated route record from the ROUTE REQUEST, indicating the

path that the ROUTE REQUEST traveled to reach D. The forwarding
of the ROUTE REQUEST also terminates when it reaches a node that
has in its cache a route to D; this node then returns a ROUTE REPLY

packet to S, giving the route as a concatenation of the accumulated
route record from the ROUTE REQUEST together with this node’s
own cached route to D. The returned source route from the ROUTE

REPLY is cached by S for use in sending subsequent data packets.
Route Maintenance is performed by each node that originates or

forwards a data packet along a source route. Each such node is
responsible for confirming that the packet has been received by the
next hop along the source route given in the packet; the packet is
retransmitted (up to a maximum number of attempts) until this con-
firmation of receipt is received. This confirmation may be provided
at no cost to DSR, either as an existing standard part of the MAC
protocol in use (such as the link-level acknowledgement frame de-
fined by IEEE 802.11 [5]), or by a passive acknowledgement [10].
If neither of these confirmation mechanisms are available, the node
transmitting the packet may set a bit in the packet header to request
a DSR-specific software acknowledgement be returned by the next
hop. If this confirmation is not received after some maximum num-
ber of local retransmission attempts, this node returns to the original
sender of the packet a ROUTE ERROR message, identifying the link
over which the packet could not be successfully transmitted. When
receiving the ROUTE ERROR, this original sending node removes
this broken link from its cache. In addition to returning a ROUTE

ERROR message, this node may also attempt to salvage the original
packet [2], if it has a route to the intended destination of the packet
in its own cache. If so, the node replaces the original source route
on the packet with the route from its cache and forwards the packet
along that route; otherwise, the node discards the packet since no
correct route is available.

In response to a single Route Discovery, a node may learn and
cache multiple routes to any destination. Nodes may also learn
routing information from any packets that they forward or that they
can overhear through optionally operating their network interface
hardware in promiscuous mode; in particular, routing information
may be learned from a ROUTE REQUEST, ROUTE REPLY, or ROUTE

ERROR packet, or from the source route in the header of a data packet.

3. Caching Strategy Design Choices

3.1. Cache Structure

In developing a caching strategy for an on-demand routing protocol
for wireless ad hoc networks, one of the most fundamental design
choices that must be made is the type of data structure used to rep-
resent the cache. In DSR, the route returned in each ROUTE REPLY

that is received by the initiator of a Route Discovery represents a
complete path (a sequence of links) leading from that node to the
destination node. By caching each of these paths separately, a path
cache can be formed; Figure 1(a) illustrates an example path cache
for some node S in the ad hoc network. Alternatively, a link cache
could be created, in which each individual link in the routes returned
in ROUTE REPLY packets is added to a unified graph data structure
of this node’s current view of the network topology; Figure 1(b)
illustrates an example link cache for node S.

A path cache is very simple to implement and easily guaran-
tees that all routes are loop-free, since each individual route from
a ROUTE REPLY is loop-free. To find a route in a path cache, the
sending node can simply search its cache for any path (or prefix of a
path) that leads to the intended destination node. On the other hand,
to find a route in link cache, a node must use a much more complex
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graph search algorithm, such as the well-known Dijkstra’s shortest-
path algorithm, to find the current best path through the graph to the
destination node. Such an algorithm is more difficult to implement
and may require significantly more CPU time to execute.

However, a path cache data structure cannot effectively utilize
all of the potential information that a node might learn about the
state of the network. In a link cache, links learned from different
Route Discoveries or from the header of any overheard packets can
be merged together to form new routes in the network, but this is
not possible in a path cache due to the separation of each individual
path in the cache. For example, if node S with the cache as shown
in Figure 1(b) learns of a new link from node A to node G, it can
use this link to also form new routes to nodes H and I (through A
and G) that it could use if the link from F to G later breaks, but a
node using a path cache would be unable to take advantage of these
additional routes.

3.2. Cache Capacity

The capacity of a route cache is another important area of choice in
designing a caching strategy for on-demand routing protocols. For a
link cache, the logical choice is to allow the cache to store any links
that are discovered, since there is a fixed maximum of N 2 links that
may exist in an ad hoc network of N nodes. However, for a path
cache, the maximum storage space that could be required is much
larger, since each path is stored separately and there is no sharing in
the data structure even when two paths share a number of common
links. We thus consider the effects of different limits on the capacity
of path caches in terms of the number of individual paths it can
store. In general, our intuition was that the larger the capacity of a
path cache, the better the routing protocol should perform, since it is
able to keep a more complete set of routes. However, as we show in
Section 7, a smaller cache size actually can have an indirect effect
in improving performance.

An additional design choice with respect to cache capacity that
we consider is the division of the cache into two halves: one half
for paths that have been used by this node (the primary cache) and a
second half for paths that have not yet been used since being learned
(the secondary cache); when a path (or a prefix of a path) in the
secondary cache is first used, that path (or prefix) is promoted to the
primary cache. This division of the cache avoids forcing out of the

cache paths that this node has found useful, when attempting to insert
some new path into the cache that has just been learned and has not
yet been used (and may never be used). Old paths in the secondary
cache are removed due to capacity limits and the natural operation
of the cache when adding new paths as they are learned, whereas
old paths in the primary cache are more actively removed due to the
operation of Route Maintenance as they are used. We refer to such
a divided cache as a generational cache, in a manner similar to the
way a generational garbage collector works in a language runtime
system with dynamic storage allocation.

3.3. Cache Timeout

As with cache capacity, cache timeout policy introduces a number
of design choices to consider in a caching strategy. Because a path
cache generally has a mechanism for removing entries through a
capacity limit, we did not implement a timeout for path caches. For
link caches, the timeout on each link in the cache may be either
static or adaptive.

For a static timeout, each link is removed from the cache after a
specified amount of time has elapsed since the link was added to the
cache. For an adaptive timeout, a node adding a link to its cache
attempts to determine a suitable timeout after which the link will be
deleted from the cache, and this timeout value should be based on
properties of the link or the nodes that are the endpoints of the link.
Finally, similar to the generational path caching alternative, it is
possible to allow a link that is being used to not expire by increasing
its timeout when it is used.

4. Caching Algorithms Studied

From the caching strategy design choices given in Section 3, we
chose a collection of path caches and link caches to simulate and
evaluate. We also simulated an “omniscient expiration” cache,
which although unimplementable in a real system, gives us a bench-
mark against which our other cache algorithms can be compared.

4.1. Path Caches

Path caches store a set of complete paths (sequences of links), each
starting at the caching node. We analyzed the following algorithms
that use path caches:

� Path-Inf is a path cache with no capacity limit (infinite
capacity).

� Path-FIFO-64 is a path cache with a 64-path capacity limit. The
cache replacement policy used on paths in the cache is FIFO.

� Path-FIFO-32 is the same as Path-FIFO-64, except that it uses
a 32-path capacity limit.

� Path-Gen-64 is a generational path cache that employs a 30-
element FIFO primary cache to store paths that have been used
or were returned directly to this node in a ROUTE REPLY, and a
separate 64-element FIFO secondary cache to store other paths;
the total capacity of this cache is 94 elements.

� Path-Gen-34 is the same as Path-Gen-64, except that the size
of the secondary cache is 34-elements; the total capacity of this
cache is 64 elements, the same as Path-FIFO-64. This specific
caching algorithm, of this size, is the same as that used in our
original ns-2 simulation of DSR [2].

4.2. Link Caches

Link caches store a set of individual links, organized as a graph
data structure. We analyzed the following algorithms that use link
caches:
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� Link-NoExp is a link cache with no timeout (no expiration).

� Link-Static-5 is a link cache in which links normally are expired
5 seconds after they are put into the cache. This is a generational
cache, such that links that are used to source packets sent by
this node are marked to not timeout.

� Link-Adapt-1.25 is a link cache in which a link’s timeout is
chosen according to a stability table. Each node keeps a table
recording its perceived stability of each other node. When
a link is used, the stability metric for both endpoint nodes is
incremented by the amount of time since that link was last used,
multiplied by some factor; when a link is observed to break, the
stability metric for both endpoints is multiplicatively decreased
by a different factor. A link entering the cache is given a lifetime
equal to the stability of the less-“stable” endpoint of the link,
except that a link is not allowed to be given a lifetime under
1 second. As with Link-Static-5, this is a generational cache,
such that links that are used to source packets sent by this node
are marked to not timeout. For this cache, the additive increase
factor is 4, and the multiplicative decrease factor is 1.25. The
stability table for each node is initialized to 25 seconds.

� Link-Adapt-2 is the same as Link-Adapt-1.25, except that the
multiplicative decrease factor is 2.

� Link-MaxLife is the same as Link-Adapt-2, except that when a
node chooses a route from the cache, it chooses the shortest-
length route that has the longest expected lifetime (highest min-
imum timeout of any link in the path), as opposed to an arbitrary
route of shortest length.

4.3. Omniscient Expiration Cache

For comparison against the other caching algorithms that we stud-
ied, we also analyzed the following “omniscient expiration” caching
algorithm:

� Link-OmniExp is a link cache that performs omniscient expi-
ration of cached links, such that a link is removed from the
cache exactly when it ceases to physically exist. The simula-
tor has omniscient knowledge of the location of all nodes, and
Link-OmniExp bases cache expiration on a nominal wireless
transmission range for each link of 250 m.

5. Methodology

5.1. Simulator

We analyzed the effects the different caching strategy design choices
through detailed simulation of the different caching algorithms de-
scribed in Section 4. The experiments were conducting using the
ns-2 network simulator [3], which we have extended to support
the simulation of wireless and mobile networks [2]. The simula-
tor properly models signal strength, RF propagation, propagation
delay, wireless medium contention, capture effect, interference, and
arbitrary continuous node mobility. The radio model is based on the
Lucent Technologies WaveLAN 802.11 product, providing a 2 Mbps
transmission rate and a nominal transmission range of 250 m. The
link layer modeled is the Distributed Coordination Function (DCF)
of the IEEE 802.11 wireless LAN standard [5].

5.2. Communication Model Used

The communication model simulated in all scenarios was a script
consisting of 20 Constant Bit Rate (CBR) data connections, each
transmitting 4 packets per second; the size of each packet is 64 bytes.
Each node was the source of at most 2 CBR connections.

5.3. DSR Performance Metrics

We evaluated the performance of DSR on each of the caching algo-
rithms according to four metrics:

� Packet Delivery Ratio: The fraction of packets sent by the
“application layer” on a source node that are received by the
“application layer” on the corresponding destination node.

� Overhead: The total number of packets transmitted by the
routing protocol. This includes routing packets forwarded, but
does not include data packets forwarded.

� Latency: The delay from when a packet is sent by the “appli-
cation layer” on a source node until it is received by the “appli-
cation layer” on the corresponding destination node. This can
only computed for packets that are successfully delivered.

� Path Optimality: The difference between the number of hops
over which a packet was routed and the number of hops in the
shortest route that physically existed when the packet was sent.
The simulator is able to determine this theoretical shortest route
at all times, based on the nominal wireless transmission range
for each link of 250 m.

6. Mobility Models Studied

6.1. Mobility Metrics

The purpose of a mobility metric is to evaluate the relative difficulty
of routing in a given ad hoc network scenario.

6.1.1. Geometric Mobility Metric

Johansson et al [7] describe a geometric mobility metric that is com-
puted for a given scenario by
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This approximation, however, can lead to a very inaccurate calcula-
tion in some cases. For example, on scenarios generated as described
in Section 6.2.1, the approximate mobility metric (with 0.1-second
granularity) was too small by more than a factor of 2.2.

Instead, we used to following technique to calculate their geomet-
ric mobility metric precisely: split the integral so that each integral is
along an interval in which there is no change in the velocity of either
i or j. Define f(t) = kPj(t) � Pi(t)k2. We want

R t2

t1

�� df(t)
dt

�� dt.
If there is no relative velocity, then the integral is 0. If f has no
local minima on [t1; t2], then the integral evaluates to

��f(t)jt2
t=t1

��.
Otherwise, if t0 2 [t1; t2] is a local minima of f , then the integral is
f(t1) + f(t2)� 2f(t0).
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6.1.2. Minimal Route-Change Metrics

A difficulty with the geometric mobility metric [7] is that it cannot
distinguish between mobility that changes the network topology and
mobility that instead has no effect on any links in the network. If we
have information about the nominal wireless transmission range of
the radios used in the network, we can more accurately determine
how mobility affects the difficulty of routing.

The minimal shortest route-change metric for a pair of nodes i

and j is the minimum number of times that i and j would need to
change routes in order to always have a shortest (least hops) path to
each other, assuming all links are bi-directional.

An alternate metric, that we call the minimal route-change metric,
is the same as the minimal shortest route-change metric, except that
a route counted by the metric only changes when it breaks, not when
a shorter route begins to exist.

6.1.3. Communication Model-Dependant Metrics

The minimal shortest route-change metric and the minimal route-
change metric both provide a number per pair of nodes; to arrive at
a metric for a scenario, we can either sum over only those node pairs
that communicate at least once during the scenario, or simply over
all pairs of nodes regardless of communication behavior.

6.2. Mobility Model Specifications

We chose the parameters for our different mobility models to make
the average speed of a node 10 m/s, and to keep the nodes as ran-
domly distributed as the model would allow. All mobility mod-
els were generated for 50 nodes moving over a simulated time of
900 seconds, and all models confine the nodes to move within a
1500 m� 500 m space. Unless otherwise noted, the initial position
of each node is chosen as (x0; y0), with x0 uniformly distributed
over [0; 1500 m] and y0 uniformly distributed over [0; 500 m]. Ten
different scenarios were generated for each model.

6.2.1. Brownian Motion

Nodes in our Brownian motion mobility model change speed and
direction at discrete time intervals, such that at the beginning of
each interval, each node chooses r 2 [0; vmax] and � 2 (��; �] and
moves with velocity vector (r sin �; r cos �) during that interval. If
this movement would cause a node to end the interval beyond the
boundaries of the rectangular area, the node instead picks the point
within the rectangular area closest to the intended destination and
moves to that point at the originally chosen velocity. The parameters
used in our implementation of this model are given in Table I.

6.2.2. Column Motion

The column mobility model was developed by Sanchez [16]. In
our implementation of this model, each node is either moving in
the positive x direction or the negative x direction. The initial
position of each node i is (10i; 10i), and all nodes start moving in
the positive x direction. The motion of the nodes is divided into

Table I Parameters for Brownian Motion

Movement interval duration 0.1 s
vmax 20 m/s

Table II Parameters for Column Motion

Movement interval duration 0.1 s
vmax 20 m/s

discrete intervals, such that at the beginning of each interval, each
node chooses v 2 [0; vmax] and moves with that speed in the same
direction as it has been moving. If this movement would cause the
node to cross the boundary of the rectangular area, the direction
is instead flipped, and the node moves with speed v in the new
direction rather than in the original direction. The parameters used
in our implementation of this model are given in Table II.

6.2.3. Random Gauss-Markov Motion

The random Gauss-Markov mobility model was developed by Liang
and Haas [13] and was described by Sanchez [17]. The motion of
the nodes is divided into discrete time intervals, such that at the
beginning of each interval, a node updates its velocity vector as

vxt = �vxt�1 + (1 � �)vx +R
p

1 � �2

vyt = �vyt�1 + (1 � �)vy +R
p

1 � �2

at interval t, where R is a normally distributed random variable with
mean 0 and variance �vx . When a movement would cause a node
to exceed the boundaries of the rectangular area, the sign of the
velocity vector in that dimension is flipped.

The parameters used in our implementation of this model are
given in Table III. The choice of �vx and �vy was made to have
the median of k(Rx; Ry)k2 be equal to 10 m/s. The value of � was
chosen to be equal to the value used by Sanchez in his implementa-
tion [18].

6.2.4. Random Waypoint Motion

The random waypoint mobility model was developed by Johnson
and Maltz [9]. In this model, a node chooses a destination with a
uniform random distribution over the area, moves there with velocity
v uniformly distributed over [0; vmax], waits there for a pause time,
and then repeats this behavior. We used a pause time of 0, meaning
continuous motion of all nodes, and chose vmax = 20 m/s. The
parameters used in our implementation of this model are given in
Table IV.

6.2.5. Pursue Motion

The pursue mobility model was developed by Sanchez [16]. In
our implementation of this model, there are 10 groups of 5 nodes
each. The motion of the nodes is divided into discrete time intervals,
such that in each group, one node moves according to the random
waypoint model, and the others attempt to “intercept” that node by
choosing their velocity vector at each interval to be toward the point
that the target node would be at at the end of the interval, given that
the target node would continue to move with the same velocity. The
velocity of the pursuing nodes is chosen uniform random for each
interval to be in the range [vpmin; vpmax]. The parameters used in our
implementation of this model are given in Table V.

Table III Parameters for Random Gauss-Markov Motion

Movement interval duration 0.1 s
Initial velocities 0 m/s
vx = vy 0 m/s
�vx = �vy 10.4835769 m/s
� 0.9

Table IV Parameters for Random Waypoint Motion

vmax 20 m/s
Pause time 0 s

5



Table V Parameters for Pursue Motion

Movement interval duration 0.1 s
vmax 20 m/s
vpmin 5 m/s
vpmax 15 m/s
Pause time 0 s

6.3. Evaluation of Mobility Metrics

We evaluated the mobility metrics described in Section 6.1 for each
of the scenarios used throughout this paper. The geometric mobility
metric was evaluated with infinite precision using the technique de-
scribed in Section 6.1.1. The mobility metrics were normalized so
that over all 50 scenarios, the metrics would lie in [0; 1].

Figure 2 summarizes the degree to which the mobility metrics ac-
curately characterize the difficulty of routing across the range of sce-
narios. Figure 2(a) shows the relationship between the normalized
all-pairs geometric mobility metric for each scenario and the actual
routing packet overhead generated by DSR on that scenario using the
Link-MaxLife and Path-Gen-34 caching algorithms. Also shown in
Figure 2(a) is the best quadratic fit to the individual data points, in a
least-squares sense, for these two caching algorithms. We show the
results for these two caching algorithms here, since Link-MaxLife
generally performs the best of the adaptive link caching algorithms,
and Path-Gen-34 is representative of the path caching algorithms.
Figure 2(b) shows the similar relationship and type of quadratic
fit for the number of ROUTE ERRORs originated during the simula-
tion of these scenarios. Figures 2(c) and (d) show these relation-
ships for the normalized all-pairs minimal route-change metric, and
Figures 2(e) and (f) show these relationships for the normalized min-
imal route-change metric summed only over communicating pairs.
Table VI shows the norm of residuals for the respective quadratic
fit for each mobility metric, including also the all-pairs minimal
shortest route-change metric, and the minimal shortest route-change
metric summed only over communicating pairs.

The minimal shortest route-change metric does not reflect well the
challenge presented to DSR, since DSR does not attempt to always
switch to the shortest route when new routes begin to exist. Instead,

Table VI Norm of Residuals for Quadratic Fits of Routing
Overhead and Number of ROUTE ERRORs

Path-Gen-34 Overhead ERRORs

Geometric 120,248 9,189
Min Route-Change over All Pairs 111,699 5,973
Min Route-Change over Comm Pairs 77,144 2,877
Min Shortest Route-Change over All Pairs 168,729 10,799
Min Shortest Route-Change over Comm Pairs 160,027 9,782

Link-MaxLife

Geometric 53,392 12,896
Min Route-Change over All Pairs 40,988 8,282
Min Route-Change over Comm Pairs 32,478 5,219
Min Shortest Route-Change over All Pairs 64,697 15,291
Min Shortest Route-Change over Comm Pairs 65,668 14,814

Link-OmniExp

Geometric 18,963 116
Min Route-Change over All Pairs 17,616 105
Min Route-Change over Comm Pairs 17,885 106
Min Shortest Route-Change over All Pairs 19,988 116
Min Shortest Route-Change over Comm Pairs 23,093 122

DSR will continue to use its best route until it breaks or until it
overhears a better route.

As shown in Figure 2 and Table VI, the four minimal route-
change metrics correlate significantly better, for both routing over-
head and number of ROUTE ERROR packets, than does the geometric
mobility metric, since route changes are a more direct cause of
overhead and ROUTE ERRORs than is geometric mobility. Of the
four minimal route-change metrics, the minimal route-change met-
ric summed only over communicating pairs (Figure 2(e) and (f))
correlates best, since summing only among communicating pairs
removes pairs which may undergo many route changes but that do
not affect the routing algorithm. In addition, since the individual
data points on the graphs relative to this metric are reasonably well
spread and not tightly clustered, we conclude that the particular
movement scenarios used in our study are generally representative
of a fairly broad array of possible scenarios within the bounds used
by these scenarios.

Although the four minimal route-change metrics correlate well
to both the routing overhead and the number of ROUTE ERRORs,
it correlates better for the number of ROUTE ERRORs. We believe
this difference is due to the variable number of ROUTE REQUEST

packets that may be sent as part of a Route Discovery, depending on
the degree of containment of the ROUTE REQUEST flood that DSR
is able to achieve for each individual Discovery attempt. We also
examined the correlation of these metrics specifically to the number
of Route Discoveries performed, and found fairly good correlation
for Path-Gen-34 but not for Link-MaxLife, which we attribute to the
very small, statistically insignificant number of Route Discoveries
needed by Link-MaxLife. Even a small change in number of Route
Discoveries for any scenario with Link-MaxLife will result in a large
relative change in the total, making correlation of any mobility met-
ric difficult. We omit the detailed graphs and table here for number
of Route Discoveries due to space constraints.

Another exception in the degree of correlation of the mobility
metrics is those results obtained using the Link-OmniExp caching
algorithm, for all of the performance indicators that we studied for
the routing protocol. For all indicators, Link-OmniExp had rela-
tively low correlation, since this caching algorithm creates very few
Route Discoveries and even fewer ROUTE ERROR packets (and thus
very small total routing overhead). As with the number of Route
Discoveries needed by Link-MaxLife, as described above, none of
the performance indicators that we studied for the routing protocol
with Link-OmniExp are statistically significant.

7. Simulation Results

7.1. Overview of the Results

For each of the caching algorithms presented in Section 4, we ran
10 different scenarios of each of the mobility models described in
Section 6.2. The scenarios were generated in advance, and the
identical scenarios was used to evaluate each of the caching algo-
rithms, allowing direct comparison of the results. Figure 3(a) shows
the packet delivery ratio achieved by each caching algorithm, av-
eraged over the 10 scenarios for each mobility model. Figure 3(b)
shows the average routing packet overhead, Figure 3(c) shows the
average packet delivery latency. Figure 3(d) shows the path op-
timality for each of the caching algorithms over the 10 scenarios
from each mobility model, normalized and averaged over the 5
mobility models.

The Link-Static-5 caching algorithm uses only a single fixed value
for the cache timeout, although in general, no single timeout value
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(b) Geometric Mobility Metric (ROUTE ERRORs)
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(Routing overhead)
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(e) Minimal Route-Change Metric, Communicating Pairs
(Routing overhead)
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Figure 2 Correlation of Mobility Metrics to Routing Overhead and Number of ROUTE ERRORs
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Figure 3 Performance of the Different Caching Algorithms on the Mobility Models

can perform best for all nodes in all ad hoc networks in all circum-
stances. In addition to the timeout value of 5 seconds shown in
our results, we also evaluated a number of other timeouts ranging
from 1 second to 40 seconds, and found that in our scenarios, the
5-second timeout performed best in terms of packet delivery ratio.
As shown in Figure 3, our scenarios represent a range of different
challenges for the routing protocol, but in each of our individual
scenarios, all nodes in a given scenario move according to the same
pattern. Thus, the advantage of an algorithm that can adapt to dif-
ferent timeouts for different links (between different pairs of nodes)
was not fully exercised. We plan additional experiments in future
work to explore this point, but here, we simply present the results
for Link-Static-5 and omit further comparison of them in this paper
due to space constraints.

Although the column mobility model creates a large amount of
motion among the nodes, there is very little relative motion among
them and thus very little challenge to any of the caching algorithms.
In fact, in each of our scenarios using the column mobility model,
only 18 Route Discoveries were performed, regardless of the caching

algorithm used. This property of the column model can also be seen
using our new mobility metrics defined in Section 6.1; for example,
the average geometric mobility metric over our column scenarios
is 79.35% of the same metric over our random waypoint scenarios,
appearing to indicate a comparable amount of mobility, yet when
compared using our all-pairs minimal route-change mobility metric,
this number drops to only 2.82%, clearly showing the much smaller
challenge to the routing protocol.

In the pursue mobility model, the network remains partitioned
much of the time; the 5 nodes in each group stay very close to each
other, while the 10 separate groups are free to move over the entire
simulation area, often leaving large, unoccupied spaces between the
groups. For example, across all of our scenarios using the pursue
mobility model, the network is partitioned on average 76.07% of
the time. Due to this high occurrence of partition, the behavior of
any caching algorithm used with the routing protocol will be very
different than in more typical, usually connected networks, mak-
ing comparison of different caching algorithms in these scenarios
difficult.
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In the remainder of this paper, we therefore focus in our analysis
on only the scenarios using the Brownian, random Gauss-Markov,
and random waypoint mobility models.

7.2. Effects of Cache Structure

For the packet delivery ratio metric, as shown in Figure 3(a), the
Link-Adapt-2 and Link-MaxLife link caching algorithms outperform
all path caches, obtaining higher packet delivery ratio than the best
path cache, evaluated individually for each mobility model. In most
cases, Link-MaxLife performs somewhat better than Link-Adapt-2
since it is able to select routes using links with the longest expected
lifetime (based on the remaining cache timeout for each link) in
addition to both algorithms’ ability to select cache timeouts based
on each node’s stability metric.

Similarly, for the routing overhead metric, as shown in
Figure 3(b), Link-Adapt-2 and Link-MaxLife outperform all path
caches, obtaining in most cases a reduction in overhead by a fac-
tor of about 2 or more over the best path cache for each mobility
model. In addition, Link-Adapt-1.25 performs better than the best
path cache for each mobility model, although not by as much as do
Link-Adapt-2 and Link-MaxLife. This is consistent with the design
intent of link caches over path caches, as link caches remove only a
single link in response to a ROUTE ERROR (rather than removing a
whole path or path suffix) and are able to combine information from
different Route Discoveries to form new routes from the cached
information.

In the scenarios that we studied, two primary factors contribute
to the total latency experienced by a packet: the time spent by
the packet waiting for a Route Discovery to complete before the
packet can be sent, and the time spent in Route Maintenance de-
tecting (through retransmissions) broken links and performing sal-
vaging. For our Brownian motion scenarios, the dominant factor
of these two is Route Discovery, which favors the link caches for
low latency, since link caches generally perform fewer Discover-
ies than path caches, due to the increase in information that can
be represented in the cache. For example, Link-Adapt-1.25 (the
highest-latency adaptive link cache) performs on average 431.5
fewer Route Discoveries than Path-FIFO-32 (the lowest-latency
path cache) in these scenarios, but it causes on average only
130.7 more ROUTE ERRORs. For the random Gauss-Markov and
random waypoint scenarios, however, the number of ROUTE ER-
RORs becomes significant in the link caches, particularly for the
Link-NoExp and Link-Adapt-1.25. For example, Link-NoExp and
Link-Adapt-1.25, respectively, cause 31,117 and 10,652 ROUTE

ERRORs, yet Path-FIFO-32 (the highest-latency non-infinite path
cache) causes only 1,973 ROUTE ERRORs.

All of the caching algorithms achieve good path optimality, and
the differences between the results with different caching algo-
rithms is small. In particular, the 5 path caching algorithms per-
form almost identically on most scenarios. However, for the link
caching algorithms, path optimality differs for the Link-NoExp and
Link-Adapt-1.25 algorithms; these algorithms deliver a greater frac-
tion of packets along optimal routes (path optimality 0) than do the
other caching algorithms, yet also deliver a greater fraction of pack-
ets along routes 6 and 7 or more hops longer than optimal than do
the other algorithms.

Both of these algorithms are able to keep a large number of un-
used links in the cache, as Link-NoExp never times out such links
and Link-Adapt-1.25 increases the node stability metrics (and thus
the link cache lifetimes) much more aggressively than it decreases
them. As such, these algorithms are able to opportunistically com-

bine results from different Route Discoveries and from other routing
information learned from packets forwarded or overhead, in order
to more often find the shortest route that exists. However, the many
unused links that these algorithms can keep in the cache also at
times are a liability; many of these links may be broken, increasing
the number of packets that must be salvaged multiple times, and
thus increasing the total hop count for salvaged packets that are
ultimately successfully delivered. In our simulations, each packet
was prevented from being salvaged more than 15 times, in order to
prevent the packet from possibly looping yet also allow alternate
routing and backtracking of the packet in the presence of some stale
cached links.

Overall, Link-MaxLife outperforms the other caching algorithms
(excluding Link-Static-5 and Link-OmniExp) on the set of perfor-
mance metrics and scenarios studied. By taking advantage of the
lifetime values in the route selection algorithm to differentiate be-
tween multiple routes of equal length, Link-MaxLife attempts to
avoid using routes that may soon result in a ROUTE ERROR and a
possible new Route Discovery. For example, in 26 of the 30 Brown-
ian motion, random Gauss-Markov, and random waypoint scenarios,
Link-MaxLife experiences fewer ROUTE ERRORs than Link-Adapt-2,
where Link-Adapt-2 is the same algorithm as Link-MaxLife without
the use of lifetimes to aid in route selection.

7.3. Effects of Cache Capacity

In scenarios generated using the random waypoint mobility model,
the Path-Inf caching algorithm, with its unlimited cache size, sur-
prisingly performs much worse than the other path caches (with
limited cache sizes) with respect to packet delivery ratio, as shown
in Figure 3(a). This performance is due to the large number of
ROUTE ERRORs caused by the use of stale routing information. When
compared to Path-FIFO-64, Path-Inf experiences only 6.51% more
ROUTE ERRORs in scenarios generated using our Brownian motion
mobility model and 40.72% more ERRORs in our random Gauss-
Markov scenarios, but experiences 165.58% more ERRORs in our
waypoint scenarios.

Latency and routing packet overhead for the Path-Inf algo-
rithm also suffer in the random waypoint scenarios, as shown in
Figures 3(b) and (c). Sending a ROUTE ERROR typically counts as
several packets of overhead since it must in general traverse several
hops. In addition, when a packet is salvaged, the combined route
traveled by the packet will typically be longer than the original route
with which the packet was sent. When a packet must be salvaged
multiple times, the resulting total routes can be quite long, causing
significant increases in latency, and for each time a packet is sal-
vaged, another ROUTE ERROR is returned to the original sender or
previous salvager of the packet.

For the FIFO cache replacement policies studied here for path
caches, no one cache size provides the best packet delivery ratio
for all mobility models. For mobility models with large amounts
of relative mobility, many Route Discoveries take place, causing
a rapid turnover in each node’s cache as it replaces existing cache
entries with new entries learned from its own Route Discoveries
or from other packets it has overheard. This cache replacement
is in effect a form of adaptation in the caching algorithm, since
as the amount of mobility in the network increases, the average
number of broken routes created in the network increases and the
average time that entries remain in a node’s cache decreases with the
cache turnover. However, with cache capacity as the limiting factor
causing increased cache turnover, the FIFO caching algorithms have
little control over which cache entry is replaced at which time. In
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particular, in a different movement scenario with highly non-uniform
behavior between different nodes, FIFO cache replacement would
force the replacement of all paths (containing nodes with different
behaviors) to be treated equally.

7.4. Effects of Cache Timeout

The use of a timeout on each cache entry in a link cache has a
similar effect in cache replacement as the use of limited capacity
has in a path cache, as described in Section 7.3. For example, the
Link-NoExp algorithm, which has no timeout on cache entries, per-
forms poorly with respect to packet delivery ratio for scenarios from
the random Gauss-Markov and random waypoint mobility models,
as shown in Figure 3(a). The movement in these models is gener-
ally quite dynamic, often resulting in the route that a node selects
to use from its cache being broken even before the first packet is
sent on it; this in turn causes the same type of ineffective salvaging
and dropped packets as occurred when using the Path-Inf algorithm,
with its unlimited path cache size.

The timeout value used on entries in the cache is closely related
to a number of performance factors of the routing protocol. For
example, if the timeout value is often too short, the number of
ROUTE REQUESTs may increase, in order to rediscover links that
were previously cached; if the timeout is often too long, the number
of ROUTE ERRORs may increase, as more broken links are used from
the cache. Similarly, the packet delivery ratio and routing over-
head in a given scenario may increase or decrease, depending on the
contents of the cache and the routing protocol’s reaction to it.

In order to assess these relationships, we ran further simulations
to collect results for static cache timeout values of 1, 2, 10, 20,
and 40 seconds, in addition to the static timeout of 5 seconds
of Link-Static-5 and the infinite timeout (no expiration) cache of
Link-NoExp. For each of these new static cache timeout values,
we simulated each of our 10 random Gauss-Markov and 10 random
waypoint scenarios. We present the results in Figure 4 for all 7
of these static timeout values for the random waypoint scenarios,
although the results for the random Gauss-Markov scenarios are
similar.

Figure 4(a) shows the relationship of the cache timeout value to
the packet delivery ratio achieved during each of our random way-
point scenarios. Figure 4(b) shows the relationship to the routing
overhead during each of these scenarios, and Figures 4(c) and (d), re-
spectively, show the relationship to the number of ROUTE REQUESTs
initiated and number of ROUTE ERRORs generated during each sce-
nario. For each timeout value, in order to show the individual point
representing each of the scenarios more clearly, the location of the
points along the x-axis have been spread uniformly over the axis to
the left and right of the specific timeout value, and the set of points
for each individual timeout value have been colored alternately black
or white. The scenarios within each timeout value in the graphs are
ordered arbitrarily, in the order originally generated.

For cache timeout values of 20 seconds or less, as shown in
Figure 4(a), the routing protocol was able to achieve between 98.8%
(the minimum in this range, at timeout 20) and 99.1% (the maximum
in this range, at timeout 5) packet delivery ratio; however, beginning
at a timeout of 40 seconds, the packet delivery ratio falls sharply due
to the large number of broken links that are allowed to accumulate
in the route caches. This large number of broken links can also be
seen in the rise in number of ROUTE ERRORs beginning at about
a timeout of 10 seconds, and rising sharply above 20 seconds, as
shown in Figure 4(d).

The routing overhead of the protocol is affected by the choice of
cache timeout much more than is the packet delivery ratio. As shown
in Figure 4(b), the routing overhead reaches a low of 15,423 routing
packets in a single run at a timeout of 10 seconds (averaged over all
of the scenarios with the same timeout); the overhead rises gradually
to an average 25,482 packets at a timeout value of 1, and rises rapidly
to an average 69,294 for the Link-NoExp caching algorithm with no
cache timeout. This rapid rise in routing overhead with increasing
cache timeout value is due to the corresponding rise in number of
ROUTE ERRORs, as shown in Figure 4(d), caused by the increased
accumulation of broken links in the caches.

The rise in routing overhead with lower cache timeout values,
below a timeout value of 10, is due to the rise in ROUTE REQUEST

packets, as shown in Figure 4(c). Rather than allowing broken links
to remain in the caches, such short timeout values in these scenarios
often delete a link from the cache while it is still valid and still
needed. The packet delivery ratio achieved decreases only slightly
due to this rise in routing overhead with lower cache timeouts, as
noted above, indicating the success of the routing protocol in being
able to quickly rediscover and re-cache routes needed for the data
packets being sent.

Based on these simulations across a range of static timeout values,
it appears that either 5 or 10 seconds may be the best static value
on these scenarios. A 5-second cache timeout results in the highest
packet delivery ratio, but is only slightly higher than at 10 seconds;
conversely, a 10-second cache timeout results in the lowest routing
overhead, but is only slightly lower than at 5 seconds. At differ-
ent node movement speeds or with different wireless transmission
ranges, however, the optimal static timeout on these same scenarios
would be different. We did not include our adaptive cache timeout
algorithms in this analysis, since in these algorithms, each link re-
ceives a different timeout, and these timeouts vary over the life of
the scenario, whereas the metrics that we relate to cache timeout
value in Figure 4 are aggregate measures that reflect the overall per-
formance of the entire scenario. Based on the performance metrics
shown in Figure 3, however, the performance of our Link-MaxLife
algorithm is very close to that of the Link-Static-5 algorithm, the
best performing static timeout caching algorithm.

8. Conclusions

A number of on-demand routing protocols for wireless ad hoc net-
works have been proposed, including TORA [14], DSR [1, 8, 9],
AODV [15], ZRP [4], and LAR [11], and earlier detailed simula-
tion work has shown that such protocols can have excellent per-
formance [2, 7]. One key to achieving this type of performance is
the design of an appropriate caching strategy for the protocol, that
can make effective use of the state information about the network
collected by the protocol as part of the process of discovering routes
to other nodes. Caching is important in order to avoid the over-
head of discovering a new route before sending each data packet,
but caching also brings with it the risk and associated expenses of
retaining routing information in a cache after the information is no
longer valid due to changes in different nodes’ positions or changes
in the wireless propagation environment.

This paper has presented an analysis of the effects of different
design choices in caching strategies for on-demand routing protocols
in wireless ad hoc networks, dividing the problem into choices of
cache structure, cache capacity, and cache timeout. Our analysis
is based on the Dynamic Source Routing protocol (DSR) [1, 8, 9],
which operates entirely on-demand. Using detailed simulations of
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Figure 4 Performance as a Function of Cache Timeout (Random Waypoint Scenarios)

wireless ad hoc networks of 50 mobile nodes, we studied a large
number of different caching algorithms that utilize a range of caching
strategy design choices, and simulated each cache primarily over a
set of 50 different movement scenarios drawn from 5 different types
of mobility models. Our evaluations include the packet delivery
ratio, routing packet overhead, packet delivery latency, and path
optimality relative to the shortest path, achieved by each caching
algorithm.

We found that the performance of adaptive caches is comparable
to that of well-tuned static caches, and that by utilizing a cache data
structure based on a graph representation of individual links, rather
than based on complete paths through the network, the routing pro-
tocol was much better able to make use of the potential information
available to it; for example, several of our link caching algorithms
were able to achieve about a factor of 2 less routing overhead than
our best path caches on many scenarios. In addition, we identified
some subtle relationships between cache timeout policies and cache
capacity limits, and between these choices and some performance
metrics for the routing protocol, most notably the packet delivery
ratio and the routing packet overhead caused by the routing pro-

tocol. Somewhat unexpectedly, we also found a strong indication
that caches of unlimited capacity or with no cache timeout perform
substantially worse than caches with reasonable capacity or timeout
limits.

This paper also contributes to the emerging definition and analysis
of mobility metrics designed to allow a characterization of the rela-
tive difficulty that a given movement scenario presents to an ad hoc
network routing protocol. We improve on the geometric mobility
metric defined by Johansson et al [7] and define a set of new mobil-
ity metrics that much more accurately characterizes the important
mobility in the system that may affect the routing protocol.
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