
CSE-4411A Test #1

Sur / Last Name:

Given / First Name:
Student ID:

• Instructor: Parke Godfrey

• Exam Duration: 75 minutes

• Term: Fall 2010

Answer the following questions to the best of your knowledge. Your answers may be brief, but be
precise and be careful. The exam is closed-book and closed-notes. Calculators, etc., are fine to use.
Write any assumptions you need to make along with your answers, whenever necessary.

There are four major questions, each with parts. Points for each question and sub-question are as
indicated. In total, the test is out of 50 points.

If you need additional space for an answer, just indicate clearly where you are continuing.

Marking Box

1. /10

2. /15

3. /10

4. /15

Total /50



1. (10 points) Buffer Pool & Operations. We’re on the same page. [short answer]

a. (6 points) Consider that you have a buffer pool that can hold three pages. There are 26
pages in the database on disk, labelled as A. . . Z. Consider each of the sequences of page
requests (access patterns) below and say the number of I/Os that would be used for the
LRU, MRU, and Clock replacement policies. (Spaces in the access patterns are only
for readability.) Assume that

• you start with an empty buffer pool each time;

• for Clock, the frame pointer starts with frame 0 each time;

• no page is written on (made dirty);

• the page is pinned and immediately unpinned each time; and

• the timestamp is updated each time the page is pinned (for LRU and MRU).

access pattern LRU MRU Clock

ABC DAB CD

JKL MLJ NK



b. (4 points) Consider that an operation that uses a given B+ tree index repeatedly for
equality searches (probes); e.g., first for aardvark, then for badger, then for capibara, and
so forth. Assume that the values for which the operation probes are in sorted order.

What replacement policy would be most beneficial for this, and why?



2. (15 points) Indexes & Index Mechanics. Index Zoology. [Exercise]

Consider the data values giraffe (29), capibara (17), badger (5), impala (41), elephant (13),
aardvark (21), hedgehog (29), donkey (25), and fox (33). The number after each represents its
hash value using the hash function h.

a. (4 points) Consider a linear hash index that has hash buckets that have room for two
entries each, and that starts with a single bucket. (So initially, zero bits are used to find
an item.)

Show how the linear hash index would look after adding the nine entries from above
(giraffe, capibara, . . . ) in that order using h as the hash function. Assume a split rule
that splits once per overflow occurrence.



b. (4 points) Consider a B+ tree index of order one that initially consists of an empty root
node.

Show a possible resulting B+ tree adding the nine entries from above (giraffe, capibara,
. . . ) in that order. (Of course, the hash values do not apply here.) Use usual split rules
and redistribution.



c. (2 points) Are there any anomalies in the indexes created in 2a and 2b?

If so, what are they, and what might be done to fix them?

(Scratch space.)



As the database administrator, you observe that there are many queries on the table Student

that have an equality predicate on major (e.g., major = ’Computer Science’) and a range
predicate on gpa (e.g., gpa ≥ 6.5).

d. (3 points) What type of index—tree versus hash, clustered versus unclustered—with
what search key would you suggest to create, and why?

e. (2 points) If you also knew that the queries often need to return st# (Student’s pri-
mary key), name, and gpa—but just those columns—and that your index had to be
unclustered, what might you propose?



3. (10 points) General. Catch a tiger. . . [Multiple Choice]

Choose one best answer for each of the following. Each is worth one point. There is no
negative penalty for a wrong answer.

a. Physical database independence has the consequence that
A. applications cannot access records directly, but only via queries.
B. applications need not know the schema of the database to compose queries.
C. records from the same table have to be stored within the same file.
D. indexes must be used to access the data.
E. pointers cannot be used internally in the database system.

b. Relational database management systems (RDBMSs) typically implement their own
buffer pool managers rather than using the operating system’s (OS’s) facilities because
A. OS’s do not handle paging between disk and main memory.
B. they need control over when a page is written back to disk.
C. an RDBMS’s buffer pool manager can page faster than the OS’s facilities can.
D. paging by the OS has no replacement policy.
E. it is easy enough to implement, so why not?

c. Which of the following changes would not make researchers re-evaluate standard database
system design?
A. CPU’s become significantly faster.
B. CPU’s with hundreds of cores become common.
C. Inexpensive, fast, non-volatile main memory becomes commonly available.
D. Computers are standardly configured with a petabyte (1015 bytes) of RAM.
E. Relational schemas with thousands of columns per table become commonplace.

d. Which of the following is false?
A. Many records fit on a page, on average.
B. Sequential reads and writes are important to a database system’s performance.
C. I/O time usually dominates CPU time in database operations.
D. Page size is determined by the query.
E. The technology trend is that the ratio of CPU speeds to disk I/O speeds is growing

over time.

e. Indexes are important for all but which of the following reasons?
A. They help check integrity constraints.
B. They can speed up selections.
C. They can be useful for joins.
D. They provide useful statistics to the query optimizer.
E. They reduce the storage overhead of the database.



f. How do index search keys differ from logical primary keys?
A. The order of the columns in a search key makes a difference.
B. Search keys do not imply uniqueness.
C. One table can have many indexes, thus many search keys.
D. All of the above.
E. None of the above.

g. Consider

I. unclustered tree indexes
II. clustered tree indexes

III. unclustered hash indexes
IV. clustered hash indexes

Equality match queries can benefit from
A. Just I.
B. Just I & II.
C. Just I, II, & IV.
D. Just II & IV.
E. Potentially any of I, II, III, & IV.

h. Alternative #1 for index organization is usually not implemented in practise for tree
indexes because
A. when records are redistributed on leaf-page splits, the rid’s can change.
B. if the data records are part of the B+ tree, no second index on the table is possible.
C. composite search keys cannot be accommodated with alternative #1.
D. data records are bigger than data entries, so fan-out is reduced.
E. it is impossible to do key compression under alternative #1.

i. Variable length fields mean records are variable length. This has the consequence that
A. the buffer pool manager must support variable length frames.
B. different records from the same table can have different numbers of fields.
C. the different fields of the same record must be kept on different pages.
D. slot#’s cannot be determined as fixed addresses on the page, so a slot directory on

each page is necessary.
E. B+ tree indexes are not possible for these records because the order of the B+ tree

cannot be determined.

j. Using replacement sort instead of quicksort for pass zero of the external sort algorithm
has the advantage that
A. it is faster than quicksort.
B. it allows for sequential reads, whereas quicksort does not.
C. it produces runs twice as long, on average, as the use of quicksort does.
D. it may reduce the number of I/O’s for pass zero, compared with using quicksort.
E. it may reduce the number of I/O’s for subsequent passes, compared with using

quicksort.



4. (15 points) External Sorting. Do run, do run, do run. [Analysis]

The standard method works in passes. Pass 0 sorts blocks of the file into runs. Subsequent
passes are merge passes. Assume we have B buffer frames allocated for the job. Within a
merge pass, each merge step merges B− 1 runs from the previous pass to produce a new run.
The procedure ends in the pass that merges the final B − 1, or fewer, runs into a single run.

We need not think in terms of separate merge passes, however. Rather, we can think of it
just as a sequence of merge steps. The standard external sort routine can be implemented by
having each merge step take the B − 1 oldest runs produced—or fewer, if fewer than B − 1
runs remain—to merge together into a new run. We can call this choice of runs to merge least

recently made. We repeat the merge step until just one run remains.

Dr. Datta Bas has a suggestion that he believes is an improvement over the standard external
sort routine. Pass 0 is the same as before (say by quicksort). But his choice of runs to merge
each time in a merge step is most recently made. That is, each merge step will take the most
recently made B − 1 runs—or fewer, if fewer remain—to merge.

a. (5 points) Consider the buffer pool allocation B to be 5, and a file of 100 pages.

Calculate the I/O cost to sort them by the external sort algorithm using the merge
selection of least recently made, which is almost the standard method as described in the
textbook.



b. (5 points) Again, consider the buffer pool allocation B to be 5, and a file of 100 pages.

Calculate the I/O cost to sort them by the external sort algorithm using the merge
selection of most recently made, Dr. Bas’s suggested method.

c. (5 points) Is Dr. Bas’s version more efficient or less efficient than the standard external
sort routine, in general?

Explain convincingly.



(Scratch space.)

Relax. Turn in your exam. Go home.


