Tree-Structured Indexes

Chapter 10

CSE-4411: Database Management Systems 1

| ntroduction

% Asfor any index, 3 alternatives for data entries k*:
® Data record with key value k
® <k, rid of data record with search key value k>
® <k, list of rids of data records with search key k>

% Choice s orthogonal to the indexing technique used
to locate data entries k*.

< Tree-structured indexing techniques support both
range searches and equal ity searches.

% ISAM: static structure; B+ tree: dynamic, adjusts
gracefully under inserts and deletes.

CSE-4411: Database Management Systems 2

Range Searches

< “Find all students with gpa > 3.0”

® If data is in sorted file, do binary search to find first
such student, then scan to find others.

® Cost of binary search can be quite high.
< Simpleidea: Create an 'index' file.

, k1 k2 KN Index File
/1 \\ \‘
/ | \ \
Page 1 Page 2 Page 3 Page N Data File

< Can do binary search on (smaller) index file!
CSE-4411: Database Management Systems 3

I SA M Iindex entry |

Py | K
0 1| Pa| K2|P, o o o K |Pm

b |

< Index file may still be quite large. But we can apply
the idea repeatedly!

Non-leaf l
Pages .
— 7/ i; \ / ‘* \ 7 ‘% \ 7 ¢ \
Leaf . . a -
Pages - L =
D Overflow ------- > D //x
page

Primary pages

% Leaf pages contain data entries.
CSE-4411: Database Management Systems 4

Commentson |SAM

< Filecreation: Leaf (data) pages allocated
sequentially, sorted by search key; then index

pages allocated, then space for overflow pages.

< Index entries; <search key value, page id>; they Index Pages
'direct’ search for data entries, which are in |eaf
pages.

& Search: Start at root; use key comparisons to go Overflow pages
toleaf. Costislog N ; F =# entries/index pg,
N = # leaf pgs

< Insert: Find leaf data entry belongsto, and put it
there.

< Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

Data Pages

< Static tree structure: inserts/deletes affect only leaf pages.

CSE-4411: Database Management Systems 5

Example ISAM Tree

< Each node can hold 2 entries; no need for "next-
leaf-page’ pointers. (Why?)

Root —,

40

[~

P

20

33

.

51

63

L\

10* ‘ 15* 20*

27*

33*

37*

40° ‘ 46*

51*

95*

63*

97*

CSE-4411: Database Management Systems 6

After Inserting 23*, 48*, 41*, 42* ...

Root ~a.
Index 40
Pages / \
20| | 33 51|63
/
Primary v \ /
Leaf N N
10* [15* 20* | 27* 33* | 37* 40* | 46 51* | 55 63* | 97*
Pages Y Y
])
Overflow 23* 48+ | 41*
Pages \
Y
42*

CSE-4411: Database Management Systems

7

... Then Deleting 42*, 51*, 97*

Root —,
40
20 | | 33 51 | | 63
/
/ V V \

10* | 15* 20* 27* 33* | 37* 40* | 46* 55* 63*

\\v \v

23* 48* | 41*

< Note that 51* appears in index levels, but not in leaf!

CSE-4411: Database Management Systems 8

B+ Tree: Most Widely Used Index

& Insert/delete at log - N cost; keep tree height-
palanced. (F =fanout, N =# |leaf pages)
< Minimum 50% occupancy (except for root). Each

node containsd <= m <= 2d entries. The parameter
dis called the order of the tree.

< Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")

CSE-4411: Database Management Systems 9

Example B+ Tree

oo ESE%ar(:FIk)EXJ

itto aleaf (asin ISAM).
& Search for 5%, 15*, all data entries >= 24* ...

£~ ™\

Root \\\\
)

13

17

24

30

- L, N N
//—\4) L/X

= 4

Ins at root, and key comparisons direct

* 16*

19*

20*

22*

24*

27*

290*

33*

34*

38*

39*

% Based on the search for 15*, we know it is not in the tree!

CSE-4411: Database Management Systems 10

B+ Treesin Practice

< Typical order: 100. Typical fill-factor: 67
® average fanout = 133

< Typical capacities:
® Height 4: 133* = 312,900,700 records
® Height 3: 133° = 2,352,637 records

< Can often hold top levels in buffer pool:
® [evell = 1 page = 8 Kbytes
®level2= 133pages= 1Mbyte
® [evel 3 =17,689 pages = 133 MBytes

CSE-4411: Database Management Systems 11

Inserting a Data Entry into aB+ Tree

% Find correct leaf L.
< Put data entry onto L.
® If [has enough space, done!
® Else, must split L (into L and a new node L2)

m Redistribute entries evenly, copy up middle key.

= Insert index entry pointing to L2 into parent of L.

% This can happen recursively

® To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

< Splits “grow” tree; root split increases height.
® Tree growth: gets wider or one level taller at top.

CSE-4411: Database Management Systems 12

R/
0‘0

Inserting 8* Into Example B+ Tree

Observe how
minimum
occupancy Is
guaranteed in
both leaf and
Index pg splits.

Note difference

between copy-up

and push-up; be
sure you
understand the
reasons for this.

/

KT N\

\Y
7*

17

|

13

24 (1 30

7 7/

CSE-4411: Database Management Systems 13

Example B+ Tree After Inserting 8*

ROON
~\

17

/—

\

5 13 24 30
4 N h ¥ \
/ L/_\A \ L/_\A L/_\A /L/_\A L/_\A
2% | 3* 5| 7*| 8* 14*| 16* 194 20* 22* 24*| 27*| 29* 33* 34*| 38*(39*

< Notice that root was split, leading to increase in height.

% In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

CSE-4411: Database Management Systems 14

Deleting a Data Entry from aB+ Tree

< Start at root, find leaf L where entry belongs.
< Remove the entry.

® [f [is at least half-full, done!

® If L has only d-1 entries,

® Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

m Jf re-distribution fails, merge L and sibling.

< |f merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

< Merge could propagate to root, decreasing height.

CSE-4411: Database Management Systems 15

Example Tree After (Inserting 8*,
then) Deleting 19* and 20* ...

ROON
S\

17
5 13 27 30
4 N h a N
/ P \ A,/\\A& P / L X
* 5% 7*| 8* 14*| 16* 22% 24* 27*| 29* 33*| 34*| 38*[39*

Deleting 19* Is easy.
Deleting 20* 1s done with re-distribution. Notice
now middle key is copied up.

N/ R/
0’0 0‘0

CSE-4411: Database Management Systems 16

... And Then Deleting 24*
& Must merge. T

N , . 30
< Observe toss' of index

entry (on right), and . / .
pull down’ of index 22+ | 277 | 207 33+ | 34+ | 38+ | 30"

entry (below).

RON
S\

5 13 17 30
2* | 3* 5* | 7* | 8* 14* | 16* 22%| 27*| 29* 33*| 34*|38* | 39*

CSE-4411: Database Management Systems 17

Example of Non-leaf Re-distribution

% Treeis shown below during deletion of 24*. (What

could be a possl

bleinitial tree?)

< In contrast to previous example, can re-distribute entry

from left child of root to right child.

Roo\
X

/’

17 20 Wo
\ Y

H 397

CSE-4411: Database Management Systems 18

After Re-distribution

< Intuitively, entries are re-distributed by “pushing
through’ the splitting entry in the parent node.

< It suffices to re-distribute index entry with key 20;
we' ve re-distributed 17 as well for illustration.

Roo\
N
17

5 13 20 || 22 30

¥ N ¥~ N J ¥ N ¥ ¥~ S ¥~

2| 3* S*| 7| 8* 14% 16* 174184 20% 21* 22%| 271 29* 33%34*438*|39*

CSE-4411: Database Management Systems 19

Prefix Key Compression

< lmportant to increase fan-out. (Why?)

< Key valuesin index entries only “direct traffic’; can
often compress them.

® E.¢, If we have adjacent index entries with search
key values Dannon Yogurt, David Smith and
Devarakonda Murthy, we can abbreviate David Smith
to Dav. (The other keys can be compressed too ...)

® [s this correct? Not quite! What if there is a data entry
Davey Jones? (Can only compress David Smith to Davi)

® [n general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

< Insert/del ete must be suitably modified.

CSE-4411: Database Management Systems 20

Bulk Loading of aB+ Tree

< If we have alarge collection of records, and we want
to create a B+ tree on some field, doing so by
repeatedly inserting records is very slow.

< Bulk L oading can be done much more efficiently.

< Initialization: Sort all data entries, insert pointer to
first (leaf) page in a new (root) page.

Root™

Sorted pages of data entries; not yet in B+ tree

-

* 10*

11~

12*

13*% [20*|22*| |23*|31* |35*|36*| |38*(41*| |44*

CSE-4411: Database Management Systems 21

Bulk Loading (Cont.)

S

Root ™ 101 20

% Index entriesfor ,
leaf pages always /

entered Into ri ght- v Data entry pages
most 1ndex page ° ,) 12 , , 23. 35 X not yet in B+ tree
just above leaf J / L / j \ /
level. When this £\ 2 WAV £V £ -
fills up it Sp|i'[S. 3*[4*| | 6%[9*| |10%11% |121131 |2071224 234317 35%36%||38141" (441
(Split may go up ~_
right-most path to Root [T20]|
the root.) N

< Much faster than I IESI
repeated INSser tS, / \ l \ Data entry_pages
espeCIaIIy when 5 = >3 s ot yeet in/ B+ tree
one considers | ARt AR AR}
locking! j l / l / \

£\ I\ £\ ™\ ZaN N S\ Y

3% 4*| [6% 9% [10%11% (1241374 [20%422% |23%319 [35%36*| |38141%||44%

CSE-4411: Database Management Systems 22

Summary of Bulk Loading

< Option 1. multiple inserts.
® Slow.
® Does not give sequential storage of leaves.
< Option 2: Bulk L oading
® Has advantages for concurrency control.
® Fewer [/Os during build.

® [eaves will be stored sequentially (and linked, of
course).

® Can control “fill facto” on pages.

CSE-4411: Database Management Systems 23

A Noteon Order’

< Order (d) concept replaced by physical space criterion
In practice ("at least half-full’).
® Index pages can typically hold many more entries
than leaf pages.

® Variable sized records and search keys mean differnt
nodes will contain different numbers of entries.

® Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

CSE-4411: Database Management Systems 24

Summary

% Tree-structured indexes are ideal for range-searches,
also good for equality searches.

< |ISAM Is astatic structure.
® Only leaf pages modified; overtlow pages needed.

® Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

< B+ treeisadynamic structure.
® Inserts/deletes leave tree height-balanced; log N cost.

® High fanout (F) means depth rarely more than 3 or 4.
® Almost always better than maintaining a sorted file.

CSE-4411: Database Management Systems 25

Summary (Cont.)

< B+ Trees:
® Typically, 67% occupancy on average.

® Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.

® |f data entries are data records, splits can change rids!
< Key compression increases fanout, reduces height.

< Bulk loading can be much faster than repeated inserts
for creating a B+ tree on alarge data set.

< Most widely used index in database management
systems because of its versatility. One of the most
optimized components of aDBMS.

CSE-4411: Database Management Systems 26

