Test 1

First Name:
Last Name:
Student Number:
This test lasts 75 minutes. No aids allowed.
Make sure your test has 5 pages, including this cover page.
Answer in the space provided. (If you need more space, use the reverse side of the page and indicate clearly which part of your work should be marked.)
Write legibly.

Question 1	$/ 3$
Question 2	$/ 4$
Question 3	$/ 3$
Question 4	$/ 3$
Question 5	$/ 4$
Question 6	$/ 4$
Total	$/ 21$

1. [3 marks] Give a high-level description of how a non-deterministic finite automaton can be transformed into a deterministic finite automaton that accepts the same language. Your answer must fit inside the box below. Anything written outside the box will be ignored.
\square
2. [4 marks] Draw the transition diagram of a deterministic finite automaton that accepts the language of binary strings whose last 3 characters are 101. (You do not have to prove your answer is correct.)
3. [3 marks] List all strings of length 7 in the language represented by the regular expression $(a c)^{*}(b b a \cup a a \cup \varepsilon)^{*}$.
4. [3 marks] Write down a regular expression for the language accepted by the following nondeterministic finite automaton. (You do not have to prove your answer is correct.)

5. [4 marks] For any language L over the alphabet Σ, let $D R O P(L)$ be the language containing all strings that can be obtained from any string in L by deleting exactly one character. More precisely,

$$
D R O P(L)=\left\{x y: x, y \in \Sigma^{*} \text { and for some } a \in \Sigma, x a y \in L\right\}
$$

Given a deterministic finite automaton $\left(Q, \Sigma, \delta, q_{0}, F\right)$ for L, provide a precise definition of a non-deterministic finite automaton $\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}, F^{\prime}\right)$ for $D R O P(L)$.
6. [4 marks] Let L be the language of binary strings of odd length whose middle character is a 1. In other words, $L=\left\{x 1 y: x, y \in\{0,1\}^{*}\right.$ and $\left.|x|=|y|\right\}$. Prove that L is not regular.

