Homework Assignment \#6 Due: November 9, 4:00 p.m.

1. In this question, we consider a language over the alphabet $\{0,1, \#\}$. If n is a natural number, let $B(n)$ be the binary representation of n (with no leading 0 's). For example, $B(22)$ is the string 10110.

Let $L_{1}=\{B(n) \# B(m): n, m \in \mathbb{N}$ and $n>m\}$. Describe a single-tape Turing machine that decides L_{1}. Do not give a formal definition of the Turing machine. Instead, you should break down your solution into a sequence of very simple steps, each of which can easily be implemented on a Turing machine. (The format of your answer should be similar to the 5 -step description of M_{2} on page 143 of the textbook or the 5 -step description of M_{3} on page 146.) You should also specify what the tape alphabet of your Turing machine is.
2. Problem 3.15(b) on page 161 of the textbook.

