Homework Assignment \#2
 Due: October 5, 2010

1. Recall the formal definition of a string from class: a string over alphabet Σ is a function from $\{i \in \mathbb{N}: 1 \leq i \leq \ell\}$ to Σ (where ℓ is some natural number called the length of the string).

Recall the formal definition of string concatenation from class: If s_{1} and s_{2} are strings over Σ of length ℓ_{1} and ℓ_{2}, respectively, then $s=s_{1} \cdot s_{2}$ is a string over Σ of length $\ell_{1}+\ell_{2}$ defined as follows.

$$
s(i)=\left\{\begin{array}{ll}
s_{1}(i) & \text { if } 1 \leq i \leq \ell_{1} \\
s_{2}\left(i-\ell_{1}\right) & \text { if } \ell_{1}+1 \leq i \leq \ell_{1}+\ell_{2}
\end{array}\right\}
$$

If z is a string of length ℓ over the alphabet Σ, then the reverse of z, denoted z^{R}, is a string of length ℓ over Σ defined as follows.

$$
z^{R}(i)=z(\ell-i+1)
$$

Use these definitions to give a careful proof that, for any strings x and y over $\Sigma,(x \cdot y)^{R}=$ $y^{R} \cdot x^{R}$.
2. Draw a deterministic finite automaton that decides the language of all binary strings that do not contain 1010 as a substring. You do not have to prove your answer is correct. However, for each state of your automaton, write down a description of all strings that take the machine to that state.

Optional programming task (Do not hand this in.) Write a Java programme which, given a description of a deterministic finite automaton and an input string, determines whether the automaton accepts or rejects the string. Assume that the automaton description is given in the following format.

- The first line gives two integers separated by a space: n, the number of states, and m, the number of accepting states. (We will assume the states are labelled $1,2, \ldots, n$ and that state 1 is the starting state.)
- The second line gives a string containing one copy of each character in the alphabet.
- The third line gives a list of the m accepting states, separated by spaces. (If there are no accepting states, this line will be blank.)
- The remaining lines describe the possible transitions. If $\delta(q, a)=q^{\prime}$, there will be a line containing q, a and q^{\prime}, separated by spaces. The end of the transitions will be indicated by a line containing just 0 .

For example, the automaton shown on page 34 of the textbook would be specified as follows:

```
3 1
0 1
2
1 0 1
1 12
2 0 3
2 12
30 2
312
0
```

