Homework Assignment \#10 Due: December 9, 4:00 p.m.

1. In this question, we consider languages over the alphabet $\{0,1, \#\}$. If n is a positive integer, let $B(n)$ be the binary representation of n (with no leading 0 's). For example, $B(22)$ is the string 10110.

Let $L_{1}=\left\{B(n) \# B(m): n, m \in \mathbb{Z}^{+}\right.$and $\left.n>m\right\}$. For example, $11000 \# 10110$ is in L_{1} because $B(24)=11000$ and $B(22)=10110$ and $24>22$. However, the strings $11000 \# 111111$ and $10110 \# 11000$ are not in L_{1}. In assignment $\# 5$, we saw that L_{1} is not regular.

Let $L_{2}=\left\{B(n) \#(B(m))^{R}: n, m \in \mathbb{Z}^{+}\right.$and $\left.n>m\right\}$. For example, $11000 \# 01101$ is in L_{2} because $B(24)=11000$ and $(B(22))^{R}=(10110)^{R}=01101$ and $24>22$. However, the strings $11000 \# 111111$ and $10110 \# 00011$ are not in L_{2}.
(a) Is L_{1} context-free?
(b) Is L_{2} context-free?

If you answer yes for either language, you must give a context-free grammar for that language. You do not have to give a formal proof that the grammar generates the language, but you should give, for each variable in your grammar, a precise description of the set of strings that the variable generates.

If you answer no for either language, you must give a formal proof that the language is not context-free.

