
ECT–1

Equivalence Class Testing

Chapter 6

ECT–2

Introduction

 What problems does boundary value testing have?

 What are the motivations for equivalence class
testing?

ECT–3

Introduction – 2

 Boundary Value Testing derives test cases with
 Serious gaps
 Massive redundancy

 Motivations for equivalence class testing are
 Complete testing
 Avoid redundancy

ECT–4

Motivation and assumptions

 How do equivalence classes meet the motivations of
functional testing?

 What assumptions are made?

ECT–5

Motivation and assumptions – 2

 The variable domain is partitioned into disjoint sub-sets

 Completeness
 The entire set is represented by the union of the

sub-sets

 Redundancy
 The disjointness of the sets assures a form of

non-redundancy
 Choose one test case from each sub-set

ECT–6

Applicability

 Applicability
 Program is a function from input to output
 Input and/or output variables have well defined intervals

 For a two-variable function F(x1,x2)

a ≤ x1 ≤ d, with intervals [a,b), [b,c), [c,d]

e ≤ x2 ≤ g, with intervals [e,f), [f,g]

ECT–7

Variations

 What variations are used for equivalence class
testing?

ECT–8

Variations – 2

 Uses the same two orthogonal dimensions as in boundary
value analysis

 Robustness
 Robust-normal distinguishes valid data from invalid data

 Single/Multiple Fault Assumption
 Weak-strong distinguishes single from multiple fault

 Combinations give four variations.

ECT–9

Weak-Normal ECT

 What is the number of test cases for weak-normal
testing?

ECT–10

Weak-Normal ECT – 2

e

g

f

a b c d

x2

x1

Number of test cases =

max / [[v : 1 .. #variables • number_equivalence_classes (variablev)]]

ECT–11

Strong-Normal ECT

 What is the number of test cases for strong-normal
testing?

ECT–12

Strong-Normal ECT – 2

e

g

f

a b c d

x2

x1

Number of test cases =

× / [[v : 1 .. #variables • number_equivalence_classes (variablev)]]

ECT–13

Weak-Robust ECT

 What is the number of test cases for weak-robust
testing?

ECT–14

Weak-Robust ECT – 2

Figure 6.3 in
the textbook
is incorrect

e

g

f

a b c d

x2

x1

Number of test cases =

 max / [[v : 1 .. #variables • number_equivalence_classes (variablev)]]
+
 +/ [[v : 1 .. #variables • number_invalid_bounds (variablev)]]

ECT–15

Strong-Robust ECT

 What is the number of test cases for strong-robust
testing?

ECT–16

Strong-Robust ECT – 2

e

g

f

a b c d

x2

x1

Number of test cases =

× / [[v : 1 .. #variables • number_equivalence_classes (variablev)
 + number_invalid_bounds (variablev)]]

ECT–17

Limitations of ECT

 What are the limitations of equivalence class testing?

ECT–18

Limitations of ECT – 2

 The same as those for boundary value testing

 Does not work well for Boolean variables

 Does not work well for logical variables

 When variables are not independent – i.e. are dependent

 Not that useful for strongly-typed languages

 For robust variations same as for boundary value testing
 Difficult or impossible to determine expected values for invalid

variable values

ECT–19

Triangle Equivalence Classes

 Four possible outputs:
 Not a Triangle, Isosceles, Equilateral, Scalene

 We can use these to identify output (range) equivalence
classes

 O1 = {a, b, c : 0 .. 200 • equilateral_triangle (<a,b,c>) }
 O2 = {a, b, c : 0 .. 200 • isoceles_triangle (<a,b,c>) }
 O3 = {a, b, c : 0 .. 200 • scalene_triangle (<a,b,c>) }
 O4 = {a, b, c : 0 .. 200 • not_a_triangle (<a,b,c>) }

What are the number of test cases for
• weak-normal? • strong-normal?
• weak-robust? • strong-robust?

Why don’t the previous formulas work?

ECT–20

Triangle – Weak Normal Test Cases

Not a
Triangle214WN4

Scalene543WN3

Isosceles322WN2

Equilateral555WN1

Expected
Output

cbaTest Case

ECT–21

Triangle – Weak Robust Test Cases

c not in range20155WR6

b not in range52015WR5

a not in range55201WR4

c not in range-155WR3

b not in range5-15WR2

a not in range55-1WR1

Expected
Output

cbaTest Case

Weak-normal cases + following error cases

ECT–22

Triangle – input equivalence classes

D1 = { a,b,c : 1..200 | a = b = c • <a,b,c> }

D2 = { a,b,c : 1..200 | a = b, a ≠ c • <a,b,c> }

D3 = { a,b,c : 1..200 | a = c, a ≠ b • <a,b,c> }

D4 = { a,b,c : 1..200 | b = c, a ≠ b • <a,b,c> }

D5 = { a,b,c : 1..200 | a ≠ b, a ≠ c, b ≠ c • <a,b,c> }

D6 = { a,b,c : 1..200 | a ≥ b+c • <a,b,c> }

D7 = { a,b,c : 1..200 | b ≥ a+c • <a,b,c> }

D8 = { a,b,c : 1..200 | c ≥ a+b • <a,b,c> }
Is this a good set of
equivalence classes
to use or is there a
problem?

What are the number
of test cases for
• weak-normal?
• strong-normal?
• weak-robust?
• strong-robust?

ECT–23

NextDate – naive equivalence classes

M1 = { month : 1 .. 12 }

D1 = { day : 1 .. 31 }

Y1 = { year : 1812 .. 2012 }

Invalid data

M2 = { month : Integer | month < 1 }

M3 = { month : Integer | month > 12 }

D2 = { day : Integer | day < 1 }

D3 = { day : Integer | day > 31 }

Y2 = { year : Integer | year < 1812 }

Y3 = { year : Integer | year > 2012 }

What is the problem
with using these
equivalence classes?

What are the number
of test cases for
• weak-normal?
• strong-normal?
• weak-robust?
• strong-robust?

ECT–24

M1 = {month : 1 .. 12 | days(month) = 30 }

M2 = {month : 1 .. 12 | days(month) = 31 }

M3 = {month : {2} }

D1 = {day : 1 .. 28}

D2 = {day : {29} }

D3 = {day : {30} }

D4 = {day : {31} }

Y1 = {year : {2000} }

Y2 = {year : 1812 .. 2012 | leap_year (year) ∧ year ≠ 2000 }

Y3 = {year : 1812 .. 2012 | common_year (year) }

NextDate – improved equivalence classes

What is good and bad
with using these
equivalence classes?

ECT–25

Weak Normal Test Cases

Invalid input
date1900316WN4

Invalid input
date2002302WN3

7/30/19961996297WN2

6/15/19001900146WN1

Expected
Output

YearDayMonthTest Case

ECT–26

NextDate strong test cases

 What are the number of test cases for
strong-normal testing?

 What are the number of test cases for
strong-robust testing?

ECT–27

NextDate discussion

 There are 36 strong-normal test cases (3 x 4 x 3)

 Some redundancy creeps in
 Testing February 30 and 31 for three different types of years

seems unlikely to reveal errors

 There are 150 strong-robust test cases (5 x 6 x 5)

ECT–28

Commission problem – input classes

L1 = {locks : 1 .. 70 }

L2 = {locks : { -1 } }

S1 = {stocks : 1 .. 80 }

B1 = {barrels : 1 .. 90}

Invalid data

L3 = {locks : Integer | locks ≤ 0 ∧ locks ≠ -1}

L4 = {locks : Integer | locks > 70 }

S2 = {stocks : Integer | stocks < 1 }

S3 = {stocks : Integer | stocks > 80 }

B2 = {barrels : Integer | barrels < 1 }

B3 = {barrels : Integer | barrels > 90 }

What are the number
of test cases for

• weak-normal?

• strong-normal?

• weak-robust?

• strong-robust?

What is good and
not good about
using these classes?

ECT–29

Commission problem – output classes

Sales = 45 × locks + 30 × stocks + 25 × barrels

S1 = {sales : 0 .. 1000 }

S2 = {sales : 1001 .. 1800 }

S3 = {sales : Integer | sales > 1800 }

Invalid data

S4 = {sales : Integer | sales < 0}

What are the number
of test cases for
• weak-normal?
• strong-normal?
• weak-robust?
• strong-robust?

Figure 5.6, page 84 shows the
classes pictorially

What is good and
not good about
using these classes?

ECT–30

Guidelines and observations

 Equivalence Class Testing is appropriate when input data is
defined in terms of intervals and sets of discrete values.

 Equivalence Class Testing is strengthened when combined
with Boundary Value Testing

 Strong equivalence takes the presumption that variables are
independent. If that is not the case, redundant test cases
may be generated

ECT–31

Guidelines and observations – 2

 Complex functions, such as the NextDate program, are well-
suited for Equivalence Class Testing

 Several tries may be required before the “right” equivalence
relation is discovered

 If the equivalence classes are chosen wisely, the potential
redundancy among test cases is greatly reduced.

 The key point in equivalence class testing is the choice of the
equivalence relation that determines the classes.

