CSE 3402: Intro to Artificial Intelligence
Uninformed Search I

eRequired Readings: Chapter 3, Sec. 1-4.

Neamt
[-1

Lugoj

Mehadia
Dobrotagy 120

{Arad},

{Zerind, Timisoara, Sibiu},

{Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea },
{Zerind, Timisoara, Arad, Oradea, Sibiu, Bucharest, RimnicuVilcea },

Solution: Arad -> Sibiu -> Fagaras -> Bucharest
Cost: 140+99+211 = 450

Mg —~7
z ‘Ewgm N
{Arad<},

Arad},

{ A} . o {Zerind<Arad>, Timisoara<Arad>, Sibiu<Arad>},

{Zerind, Timisoara, Sibiu}, {Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>,

{Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea}, Fagaras<Sibiu;Arad>, Arad<Sibiu;Arad>, RimnicuVilcea<Sibiu; Arad>},
Zerind, Timisoara, Arad, Oradea, Sibiu, Pitesi, Craiova<via {Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>,

imnicuVilcea>}, ﬁ_qggrasélglu;érsqﬁf, Z/\er'lgd#érgd;ilblg:élﬁgd% J

S < ) ., >' < . N >:

{Zerind, Timisoara, Arad, Oradea, Sibiu, Craiovacvia Pitesi>, Bucharest, R.-'m;.igﬁ%cef]‘is.-b'iuf‘,‘\mﬁ‘)} foiucArad. SibluAra

Craiovacvia RimnicuVilcea>}, . ’ .
= Solution: Arad -> Sibi Rimnicu Vil Pitesti No solution found, search does not terminate because of cycles!

oluTtion: Arad -> SIbiu -> Rimnicu Vilcea -> FitesT! ->
4

Bucharest
Cost: 140+80+97+1Q1 =418 . e 3

(CSF 3402 Winter 2010 Yves Lesperance & Fahiem Bacchus




Selection Rule.

e The example shows that order states are
selected from the frontier has a critical effect
on the operation of the search.

m Whether or not a solution is found
m The cost of the solution found.
m The time and space required by the search.

Critical Properties of Search.

e Completeness: will the search always find a
solution of a solution exists?

e Optimality: will the search always find the least
cost solution? (when actions have costs)

e Time complexity: what is the maximum
number of nodes than can be expanded or
generated?

e Space complexity: what is the maximum
number of nodes that have to be stored in
memory?

Uninformed Search Strategies

e These are strategies that adopt a fixed rule for
selecting the next state to be expanded.

eThe rule is always the same whatever the
search problem being solved.

e These strategies do not take into account any
domain specific information about the
particular search problem.

e Popular uninformed search techniques:

m Breadth-First, Uniform-Cost, Depth-First, Depth-
Limited, and Iterative-Deepening search.

Selecting vs. Sorting

e A simple equivalence we will exploit
m Order the elements on the frontier.
m Always select the first element.

e Any selection rule can be achieved by
employing an appropriate ordering of the
frontier set.




Breadth First.

ePlace the successors of the current state at the
end of the frontier.

eExample:
m let the states be the positive integers {0,1,2,...}
m let each state n have as successors n+1 and n+2
eE.g.S(1) =12, 3}, S(10) ={11,12}
m Start state 0
m Goal state 5

Breadth First Example.

{0}

1,2}
{2,2,3}
{2,3,3,4}
{3,3,4,3,4}
{3,4,3,4,4,5}

Breadth First Properties

e Measuring time and space complexity.
mlet b be the maximum number of successors
of any state.
mlet d be the number of actions in the
shortest solution.

Breadth First Properties

e Completeness?
m The length of the path from the initial state to the
expanded state must increase monotonically.
o we replace each expanded state with states on
longer paths.
o All shorter paths are expanded prior before any
longer path.
m Hence, eventually we must examine all paths of
length d, and thus find the shortest solution.




Breadth First Properties

e Time Complexity?

ml +b+b2+b3+ ...+ bdl+ bd+ bbd-1)=0(bd")

Breadth First Properties

e Space Complexity?
m O(b4+"): If goal node is last node at level d, all of the
successors of the other nodes will be on the frontier
when the goal node is expanded b(bd - 1)

Breadth First Properties

o Optimality?
m Will find shortest length solution
e least cost solution?

Breadth First Properties

e Space complexity is a real problem.
mE.g., let b = 10, and say 1000 nodes can be
expanded per second and each node requires 100
bytes of storage:

Depth Nodes Time Memory
1 1 1 millisec. 100 bytes
6 108 18 mins. 111 MB

8 108 31 hrs. 11 GB

e Run out of space long before we run out of
time in most applications.

2010 Yves Lesperance & Fahiem Bacchus




Uniform Cost Search.

e Keep the frontier sorted in increasing cost of
the path to a node.

e Always expand the least cost node.

eldentical to Breadth First if each transition has
the same cost.

eExample:
m let the states be the positive integers {0,1,2,...}
m let each state n have as successors n+1 and n+2

m Say that the n+1 action has cost 2, while the n+2
action has cost 3.

Uniform Cost Search.

{o[o]}
{1[2],2[31}
{2[31,2[4],3[51}
{2[4],3[5],3[5],4[6]}
{3[51,3[5],4[6],3[61,4[71}

Uniform-Cost Search

e Completeness?
m If each transition has costs > € > 0.

m The previous argument used for breadth first search
holds: the cost of the expanded state must increase
monotonically.

Uniform-Cost Search

o Time and Space Complexity?
mO(b®/e) where C* is the cost of the optimal solution.

eDifficulty is that there may be many long paths
with cost < C*; Uniform-cost search must explore
them all.

20




Uniform-Cost Search

o Optimality?
m Finds optimal solution if each transition has cost > €
> 0.
e Explores paths in the search space in increasing
order of cost. So must find minimum cost path to a
goal before finding any higher costs paths.

21

CSF 3402 Winter 2010 Yves L

Uniform-Cost Search. Proof of
Optimality.

1. Claim: Let c(n) be the cost of the path to node
n. If n2 is expanded after n1 then
c(nl) < c(n2).
Proof:
m If n2 was on the frontier when n1 was expanded, in which case

c(n2) = c(n1) else n1 would not have been selected for
expansion.
m If n2 was added to the frontier when n1 was expanded, in which
case ¢(n2) > c(n1) since the path to n2 extends the path to n1.
m If n2 is a successor of a node n3 that was on the frontier or
added when n1 was expanded, then c(n2) > c(n3) and c(n3) >
c(n1) by the above arguments.

22

CSF 3402 Winter 2010 Yves L

Uniform-Cost Search. Proof of
Optimality.

2. Claim: When n is expanded every path with cost
strictly less than c(n) has already been expanded (i.e.,
every node on it has been expanded).

Proof:

m Let <Start, n0, n1, ..., nk> be a path with cost less than c(n). Let

ni be the last node on this path that has been expanded. <Start,
n0, n1, ni-1, ni, ni+1, ..., nk>.

m ni+1 must be on the frontier, also c(ni+1) < c(n) since the cost
of the entire path to nk is < c(n).

m But then uniform-cost would have expanded ni+1 not n!

m So every node on this path must already be expanded, i.e. this
path has already been expanded. QED

Uniform-Cost Search. Proof of
Optimality.

3. The first time uniform-cost expands a state,
it has found the minimal cost path to it (it
might later find other paths to the same
state).

Proof:

m No cheaper path exists, else that path would have
been expanded before.

m No cheaper path will be discovered later, as all those
paths must be at least as expensive.

m So, when a goal state is expanded, the path to it
must be optimal.

S 3402 Wi 3010 e Lesperane Pt B 24




Depth First Search Depth First Search Example
e Place the successors of the current state at (applied to the example of Breadth First
the front of the frontier. search)
{o}
{1,2}
{2,3,2}
{3,4,3,2}
{4,5,4,3,2}
{5,6,5,4,3,2}
Depth First Properties Depth First Properties
e Completeness? e Time Complexity?
m Infinite paths? m O(b™) where m is the length of the longest path in

the state space.

m Prune paths with duplicate states?

e Optimality?

m Very bad if m is much larger than d, but if there are
many solution paths it can be much faster than
breadth first.




Depth First Backtrack Points

- At each step, all nodes in the frontier
(except the head) are backtrack points (see
example and draw the tree for state-space).

29

(CSF 3402 Winter 2010 Yves Lesperance & Fahiem Bacchus

Depth First Properties

e Space Complexity?
mO(bm), linear space!
oOnly explore a single path at a time.

eThe frontier only contains the deepest states on
the current path along with the backtrack points.

30

(CSE 3402 Winter 2010 Yves Lesperance & Fahiem Bacchus

Depth Limited Search

e Breadth first has computational, especially, space
problems. Depth first can run off down a very long (or
infinite) path.

o Depth limited search.

m Perform depth first search but only to a pre-specified depth
limit L.

= No node on a path that is more than L steps from the initial
state is placed on the Frontier.

m We “truncate” the search by looking only at paths of length L or
less.

e Now infinite length paths are not a problem.

e But will only find a solution if a solution of length < L
exists.

31

CSF 3402 Winter 2010 Yves Les

Depth Limited Search

DLS(Frontier, Sucessors, Goal?)
If Frontier is empty return failure
Curr = select state from Frontier
If(Goal?(Curr)) return Curr.

If Depth(Curr) <L
Frontier' = (Frontier - {Curr}) U Successors(Curr)

Else
Frontier' = Frontier - {Cur‘r‘}
CutOffOccured = TRUE.

return DLS(Frontier', Successors, Goal?)

32

(CSF 3402 Winter 2010 Yves Lesperance & Fahiem Bacchus




Iterative Deepening Search.

e Take the idea of depth limited search one step
further.

eStarting at depth limit L = 0, we iteratively
increase the depth limit, performing a depth
limited search for each depth limit.

e Stop if no solution is found, or if the depth
limited search failed without cutting off any
nodes because of the depth limit.

33

Iterative Deepening Search Example

34

Iterative Deepening Search Properties

e Completeness?

m Yes, if solution of length d exists, will the search will
find it when L = d.

e Time Complexity?

35

Iterative Deepening Search Properties

e Time Complexity

m(d+1)b% + db' + (d-1)b2 + ... + bd = O(bd)

mE.g. b=4,d=10
o(11)*40 + 10%41 + 9%42 + ... + 2%49=815,555
0410=1,048,576
eMost nodes lie on bottom layer.
eln fact IDS can be more efficient than breadth
first search: nodes at limit are not expanded. BFS

must expand all nodes until it expands a goal
node.

36




Iterative Deepening Search Properties

e Space Complexity
m O(bd) Still linear!
e Optimal?
m Will find shortest length solution which is optimal if costs are
uniform.
m If costs are not uniform, we can use a “cost” bound instead.

e Only expand paths of cost less than the cost bound.

e Keep track of the minimum cost unexpanded path in each
depth first iteration, increase the cost bound to this on the
next iteration.

e This can be very expensive. Need as many iterations of the
search as there are distinct path costs.

37

CSF 3402 Winter 2010 Yves L

Iterative Deepening Search Properties

e Consider space with three paths of length 3,
but each action having a distinct cost.

(CSE 3402 Winter 2010 Yves Lesperance & Fahiem Bacchus

38

Cycle Checking

e Path checking
m Paths are stored on the frontier (this allows us to
output the solution path).
e If <S,n,,...,n,> is a path to node n,, and we expand
n, to obtain child ¢, we have
m <S,n;,...,N,,C>
o As the path to “c’.
m Path checking:
e Ensure that the state c is not equal to the state
reached by any ancestor of c along this path.

39

(CSF 3402 Winter 2010 Yves Lesperance & Fahiem Bacchus

Path Checking Example

(CSF 3402 Winter 2010 Yves Lesperance & Fahiem Bacchus

40

10



Path Checking Example

Cycle Checking

o Cycle Checking.

m Keep track of all states previously expanded during
the search.

m When we expand n, to obtain child ¢
e ensure that c is not equal to any previously
expanded state.
m This is called cycle checking, or multiple path
checking.
m Why can’t we utilize this technique with depth-first
search?
o If we use cycle checking in depth-first search what
happens to space complexity.

O 402 Vitee 2030 e Lesecance & e s 41 S840 Wit 2010 e Leserance & i e 42
Cycle Checking Example Cycle Checking
e High space complexity, only useful with
breadth first search.
e There is an additional issue when we are
looking for an optimal solution
m With uniform-cost search, we still find an optimal
) solution
\ e The first time uniform-cost expands a state it
ik has found the minimal cost path to it.
m This means that the nodes rejected by cycle
checking can’t have better paths.
m We will see later that we don’t always have this
property when we do heuristic search.
43 44

CSF 3402 Winter 2010 Yves Les

(CSF 3402 Winter 2010 Yves Lesperance & Fahiem Bacchus

11



