
19-1© Gunnar Gotshalks

Inheritance

What is it all about?

19-2© Gunnar Gotshalks

On Objects

• An Object is a collection of data and methods to
operate on that data
» Method is a procedure, function, operation

• For a motor
» turnOn turnOff setSpeed (someSpeed)

Data

Methods

19-3© Gunnar Gotshalks

On Instances

• An object is an instance of a class
» The class provides the template

for the object

• Template gives
» data
» methods

• Can think of the object as
having a copy of the methods
and space for its own data

Class

Object

instance of

19-4© Gunnar Gotshalks

The Real Story on Space

• Only the data is unique to the object

methods

data

instance of

class

object

19-5© Gunnar Gotshalks

The Real Story – 2

• Multiple Instances
» Every object has its own data
» Objects share methods

methods

data 2

objects

class

data 1 data 3

19-6© Gunnar Gotshalks

Message Definition

• A message is equivalent to a procedure call

• It is the way objects communicate with each other
and request work to be done

• We think of the objects as being active

• Assume motor is an instance of the class MOTOR
> Then typical expressions are:

 motor . turnOn
motor . turnOff
motor . setSpeed (5)

19-7© Gunnar Gotshalks

Message Routing

• MOTOR contains method
turnOn

• The message turnOn
is sent to
the object motor

 motor . turnOn

• The data in the object
is used by the method

methods

data

MOTOR

motor

turnOn

19-8© Gunnar Gotshalks

Definitions

• Inheritance
» A class can inherit some of its methods from

another class
– methods FM ⊃ methods M

> It can define its own methods – add methods
> It can redefine the methods of the class it is

inheriting from – change semantics NOT
interface

methods FM methods M

FORD_MOTOR MOTORinherits from

19-9© Gunnar Gotshalks

Subclass & Superclass

• Subclass
» Class A is a subclass of class B if A inherits from B

• Superclass
» Class A is a superclass of class B if B inherits

from A

methods FM methods M

FORD_MOTOR MOTORinherits from

Subclass Superclass

19-10© Gunnar Gotshalks

Message passing with Inheritance

methods FM methods M

FORD_MOTOR MOTOR

Data Data

turnOn

Contains turnOn method
Does not contain
turnOn method

19-11© Gunnar Gotshalks

Class Hierarchy

• Containing class A – includes A and the following
» The transitive closure of superclasses of class A

> superclasses of A, superclasses of superclass
of A, etc.

» The transitive closure of the subclasses of class A
> subclasses of A, subclasses of the subclasses

of A, etc.

A ...

19-12© Gunnar Gotshalks

Message Passing in Class Hierarchy

• Message passes up the superclass chain until
method is found

message
object Contains the method

19-13© Gunnar Gotshalks

The Real Story on Data

• We have seen that inheritance means a subclass has
available all the methods of the transitive closure of
its superclasses

• This implies that an object is comprised of instances
of all the data from the transitive closure of its
superclasses
» Or else the methods in the superclasses would not

have any data to work on

19-14© Gunnar Gotshalks

Data Story – 2

» Instance of B has data from B and A
» Instance of C has data from C, B and A

classes

inherits inherits

ABC

instance of
class A

instance of
class B

instance of
class C

19-15© Gunnar Gotshalks

"Is a" Relationship

• When class A inherits from class B
» A inherits all the methods of B

> Instances of A can be sent all the messages that
B responds to

» A inherits all the data from B
> Instances A have instances of all the data of B

» As a consequence we can say

• Every instance of A is also an instance of B
» Can use A where ever a B can be used

A is a B

19-16© Gunnar Gotshalks

"Is a" Example

• Can say following because all instances are MOTORS
 a_V6_ford_motor . turnOn

a_ford_motor . turnOn
a_motor . turnOn

ABC

FORD_MOTORV6_FORD_MOTOR MOTOR

a_motor
a_ford_motor

a_V6_ford_motor

Contains
turnOn

19-17© Gunnar Gotshalks

"Is a" Example – 2

• Can not say following because MOTOR is not a
V6_FORD_MOTOR
 a_motor . v6_turnOn Invalid, it does not compute

ABC

FORD_MOTORV6_FORD_MOTOR MOTOR

a_motor
a_ford_motor

a_V6_ford_motor

Contains
v6_turnOn

19-18© Gunnar Gotshalks

What is a Meta Class? – Smalltalk OO

• What sort of thing is a class?
» It is also an object !
» Consequently it needs to be an instance of a class

• A meta class is the class that has a class as an
instance

• There is only one meta class for each class

19-19© Gunnar Gotshalks

The Small Picture

class

meta
class class

object

object objectobject

MOTOR CLASS

MOTOR

instances
of MOTOR

19-20© Gunnar Gotshalks

Meta Class Inheritance

class

meta
class

object

class

meta
class

object

MOTOR CLASSFORD_MOTOR CLASS

FORD_MOTOR

a_ford_motor

MOTOR

a_motor

inherits

19-21© Gunnar Gotshalks

Meta Class Creation

• When FORD_MOTOR is created as a subclass of
MOTOR then Smalltalk automatically creates the
meta class FORD_MOTOR CLASS and makes it a
subclass of MOTOR CLASS

• Meta class are not directly accessible to the user

BUT meta classes are objects !!!

19-22© Gunnar Gotshalks

The Big Picture

METACLASS class, is
a meta class and
instance of METACLASS

MOTOR class

MOTOR

tangled_12straight_6v6v8

FORD_MOTOR class

FORD_MOTOR

METACLASS, is
a meta class and
instance of
METACLASS class

19-23© Gunnar Gotshalks

Meta Classes Benefits & Drawbacks

• Benefit
» Uniform treatment of all objects

> Classes are first class citizens

• Drawback
» No strong typing

> More difficult to create error free software

19-24© Gunnar Gotshalks

Other Mechanisms

• Provide a set of features available to all classes
» Eiffel – Put them in a universal ANY class
» Java – Put them in a special class CLASS

• Operations that characterize a class rather than
object
» Most obvious is object creation

> Eiffel – use special construct create
> Java – use special construct new

» Others can be put into universal class
> Eiffel – ANY
> Java ???

19-25© Gunnar Gotshalks

Other Mechanisms – 2

• Obtain information about a class
» Eiffel

> stored in one instance of E_CLASS per class
» Java

> class Class<T>
– Instances represent classes and interfaces
– Use object.getClass() to access the Class

• object.getClass().getName() to get the name of the
class to which object belongs

