Conjunctive Normal Form & Horn Clauses

York University CSE 3401
Vida Movahedi
Overview

• Definition of literals, clauses, and CNF
• Conversion to CNF- Propositional logic
• Representation of clauses in logic programming
• Horn clauses and Programs
 – Facts
 – Rules
 – Queries (goals)
• Conversion to CNF- Predicate logic

[ref.: Clocksin- Chap. 10 and Nilsson- Chap. 2]
• A literal is either an atomic formula (called a positive literal) or a negated atomic formula (called a negated literal)
 – e.g. p, ¬q

• A clause is
 – A literal, or
 – Disjunction of two or more literals, or
 – The empty clause, shown as □, :- or {}
 – e.g. p, \(p \lor ¬q \lor r \)

• A formula \(\alpha \) is said to be in Conjunctive Normal Form (CNF) if it is the conjunction of some number of clauses
CNF (example)

\[(p \lor q) \land (q \lor \neg s \lor r) \land (\neg r \lor t)\]
CNF- Facts

• For every formula α of propositional logic, there exists a formula A in CNF such that $\alpha \equiv A$ is a tautology

• A polynomial algorithm exists for converting α to A

• For practical purposes, we use CNFs in Logic Programming
Conversion to CNF

1. Remove implication and equivalence
 - Use \((p \rightarrow q) \Rightarrow (\neg p \lor q)\)
 \((p \equiv q) \Rightarrow (p \rightarrow q) \land (q \rightarrow p)\)
 \(\Rightarrow (\neg p \lor q) \land (\neg q \lor p)\)

2. Move negations inwards
 - Use De Morgan’s
 \(\neg(p \land q) \Rightarrow (\neg p \lor \neg q)\)
 \(\neg(p \lor q) \Rightarrow (\neg p \land \neg q)\)

3. Distribute OR over AND
 \(p \lor (q \land r) \Rightarrow (p \lor q) \land (p \lor r)\)

Example:
\[p \equiv (r \land s)\]
\(\Rightarrow (\neg p \lor (r \land s)) \land (\neg (r \land s) \lor p)\)
\(\Rightarrow (\neg p \lor r) \land (\neg p \lor s) \land (\neg r \lor \neg s \lor p)\)
Representing a clause

• Consider this clause: $\neg p \lor q \lor \neg r \lor s$

• It can be written as: $\neg (p \land r) \lor q \lor s \Rightarrow (p \land r) \rightarrow (q \lor s)$

• In Logic programming, it is shown as:

\[
(q \lor s) \leftarrow (p \land r)
\]

\[
q, s : \neg p, r.
\]

• Easy way: positive literals on the left, negative literals on the right
A clause in the form:

\[p_1; p_2; \ldots; p_m : \neg q_1, q_2, \ldots, q_n. \]

is equivalent to:

\[p_1 \lor p_2 \lor \ldots \lor p_m \lor \neg q_1 \lor \neg q_2 \lor \ldots \lor \neg q_n \]

or

\[q_1 \land q_2 \land \ldots \land q_n \rightarrow p_1 \lor p_2 \lor \ldots \lor p_m \]

if \(q_1 \land q_2 \land \ldots \land q_n \) is true, then at least one of \(p_1, p_2, \ldots, p_m \) is true.
Another Example

Write the following expression as Logic Programming Clauses:

\[(((p \land (s \rightarrow r)) \lor q) \land (r \rightarrow t)) \]

1- Conversion to CNF:

\[\Rightarrow ((p \land (\neg s \lor r)) \lor q) \land (\neg r \lor t) \]

\[\Rightarrow (p \lor q) \land (\neg s \lor r \lor q) \land (\neg r \lor t) \]

\[\{ (p \lor q), (\neg s \lor r \lor q), (\neg r \lor t) \} \]

2- Symmetry of \(\land \) allows for sets notation of a CNF

3- Symmetry of \(\lor \) allows for set notation of clauses

4- As Logic Prog.

\(p; q : - \). \(q; r : - s. \) \(t : - r. \)
Horn Clause

• A Horn clause is a clause with at most one positive literal:

 – **Rules** “head:- body.”
 – **Facts** “head :-.”
 – **Queries** (or goals) “:-body.”

 e.g. \(p_1:-q_1, q_2, ..., q_n \).
 e.g. \(p_2:- \).
 e.g. \(:- r_1, r_2, ..., r_m \).

• Horn clauses simplify the implementation of logic programming languages and are therefore used in Prolog.
A Program

• A logic programming program P is defined as a finite set of rules and facts.

 – For example, $P=\{p:-q,r,\ q:-.,\ r:-a.,\ a:-.\}$

 \[
 \begin{array}{llll}
 \text{rule1} & \text{fact1} & \text{rule2} & \text{fact2}
 \end{array}
 \]

• Rules and facts (with exactly one positive literal) are called definite clauses and therefore a program defined by them is called a definite program.
Query

- A computational query (or goal) is the conjunction of some positive literals (called subgoals), e.g. \(r_1 \land r_2 \land ... \land r_n \)

- A query is deductible from \(P \) if it can be proven on the basis of \(P \): \(P \models \neg r_1 \land r_2 \land ... \land r_n \)

- Note this query is written as \(\vdash \neg r_1, r_2, ..., r_n \).
 which is \(\neg r_1 \lor \neg r_2 \lor ... \lor \neg r_n \) or \(\neg (r_1 \land r_2 \land ... \land r_n) \)

- Why? In logic programming theorem proving is used to answer queries:
 \(P \models \neg r_1 \land r_2 \land ... \land r_n \) iff \(P \cup \{ \neg (r_1 \land r_2 \land ... \land r_n) \} \) is inconsistent
Example

• P: \{ p:-q., q:-.\}

• If we want to know about p, we will ask the query:
 :-p.

• Note that the set \{ p:-q., q:-., :-p.\} is inconsistent. (Reminder: truth table for above clauses does not have even one row where all the clauses are true)

• Therefore p is provable and your theorem proving program (e.g. Prolog) will return true.
Predicate Logic Clauses

• Same definition for literals, clauses, and CNF except now each literal is more complicated since an atomic formula is more complicated in predicate logic

• We need to deal with quantifiers and their object variables when converting to CNF
1. Remove implication and equivalence

2. Move negations inwards
 Note \[\neg(\exists x) p(x) \equiv (\forall x) \neg p(x) \]

3. Rename variables so that variables of each quantifier are unique

4. Move all quantifiers to the front (Prenex Normal Form)
5. **Skolemizing (get rid of existential quantifiers)**

 5. **Skolem constants**

 \[(\exists X).\text{female}(X) \land \text{motherof}(X, \text{eve})) \Rightarrow \text{female}(g1) \land \text{motherof}(g1, \text{eve})\]

 6. **Skolem functions**

 \[(\forall X)(\exists Y).\neg \text{human}(X) \lor \text{motherof}(X, Y)\]

 \[\Rightarrow (\forall X).\neg \text{human}(X) \lor \text{motherof}(X, g2(X))\]

6. **Distribute OR over AND to have conjunctions of disjunctions as the body of the formula**

7. **Remove all universal quantifiers**
• All Martians like to eat some kind of spiced food.

[from Advanced Prolog Techniques and examples- Peter Ross]

\[\Rightarrow (\forall X)(\text{m Martian}(X) \rightarrow (\exists Y)(\exists Z)(\text{food}(Y) \land \text{spice}(Z) \land \text{contains}(Y, Z) \land \text{likes}(X, Y))) \]

\[\Rightarrow (\forall X)((\neg \text{m Martian}(X)) \lor (\exists Y)(\exists Z)(\text{food}(Y) \land \text{spice}(Z) \land \text{contains}(Y, Z) \land \text{likes}(X, Y))) \]

\[\Rightarrow (\forall X)(\exists Y)(\exists Z)((\neg \text{m Martian}(X)) \lor ((\text{food}(f(X)) \land \text{spice}(s(X)) \land \text{contains}(f(X), s(X)) \land \text{likes}(X, f(X)))) \]

\[\Rightarrow (\forall X)(((\neg \text{m Martian}(X)) \lor \text{food}(f(X))) \land ((\neg \text{m Martian}(X)) \lor \text{spice}(s(X))) \land \]

\[((\neg \text{m Martian}(X)) \lor \text{contains}(f(X), s(X))) \land ((\neg \text{m Martian}(X)) \lor \text{likes}(X, f(X)))) \]

\[\Rightarrow ((\neg \text{m Martian}(X)) \lor \text{food}(f(X))) \land \]

\[((\neg \text{m Martian}(X)) \lor \text{spice}(s(X))) \land \]

\[((\neg \text{m Martian}(X)) \lor \text{contains}(f(X), s(X))) \land \]

\[((\neg \text{m Martian}(X)) \lor \text{likes}(X, f(X))) \]