Introduction to Logic Programming

York University CSE 3401

Vida Movahedi
Overview

• Programming Language Paradigms
 – Logic Programming
 – Functional Programming

• Brief review of Logic
 – Propositional logic
 – Predicate logic
Why Logic Programming?

• View of the world imposed by a language
 A programming language tends to impose a certain view of the world on its users.

• Semantics of the programming languages
 To program with the constructs of a language requires thinking in terms of the semantics of those constructs.
• (1) Imperative programming
 – Semantics: state based
 – Computation viewed as state transition process
 – Categories:
 • Procedural
 • Object Oriented
 • Other non-structured

 – For example: C, Pascal, Turing are in the Procedural category, steps of computation describe state changing process
Programming Language Paradigms

• (2) Declarative Programming
 – Focus is on logic (WHAT) rather than control (HOW)
 – Categories:
 • Logic Programming: Computation is a reasoning process, e.g. Prolog
 • Functional Programming: Computation is the evaluation of a function, e.g. Lisp, Scheme, ...
 • Constrained Languages: Computation is viewed as constraint satisfaction problem, e.g. Prolog (R)

• Level of language
 – Low level
 • has a world view close to that of the computer
 – High level
 • has a world view closer to that of the specification (describing the problem to be solved, or the structure of the system to be presented)
Logic Programming

• Based on *first order predicate logic*

• A programmer *describes* with formulas of predicate logic

• A *mechanical problem solver* makes inferences from these formulas
Propositional Logic (review)

• Alphabet
 – Variables, e.g. p, q, r, ..., p₁, ..., p’, ...
 – Constants: T and F
 – Connectives: \{\neg, \land, \lor, \rightarrow, \equiv\}
 • or \{\sim, \& , # , ->, <->\} in some books
 – Brackets: (and)

• Well-formed-formula (wff)
 – All variables and constants are wffs.
 – If A and B are wffs, then the following are also wffs.
 \((-A), (A \land B), (A \lor B), (A \rightarrow B), (A \equiv B)\)
 – Priority of connectives, and rules for removing brackets
Propositional Logic (cont.)

• Semantics and truth tables
 – true (1) and false (0)
 – state
 – Tautologies: true in all possible states

• Satisfiable
 – A formula A is satisfiable iff there is at least one state v where $v(A)=true$
 – A set of formulae X is satisfiable (or consistent) iff there is at least one state v where for every formula A in X, $v(A)=true$.

• Contradiction: (unsatisfiable, inconsistent)
 – If A is a tautology, $\neg A$ is a contradiction
Predicate Logic (review)

• Alphabet
 – Alphabet of propositional logic
 – Object variables, e.g. \(x, y, z, \ldots, x_1, \ldots, x', \ldots\)
 – Object constants, e.g. \(a, b, c, \ldots\)
 – Object equality symbol \(=\)
 – Quantifier symbols \(\forall\) (and \(\exists\))
 – and some functions & predicates

• Term
 – An object variable or constant, e.g. \(x, a\)
 – A function \(f\) of \(n\) arguments, where each argument is a term, e.g. \(f(t_1, t_2, \ldots t_n)\)
Predicate Logic (cont.)

- Atomic formula
 - A Boolean variable or constant
 - The string \(t = s \), where \(t \) and \(s \) are terms
 - A predicate \(\phi \) of \(n \) arguments where each argument is a term, e.g. \(\phi(t_1, t_2, \ldots, t_n) \)

- Well-formed formula
 - Any atomic formula
 - If \(A \) and \(B \) are wffs, then the following are also wffs.

 \[
 \neg A, \quad (A \land B), \quad (A \lor B), \quad (A \rightarrow B), \quad (A \equiv B), \quad (\forall x)A, \quad (\exists x)A
 \]
Examples

• Numbers
 – Object constants: 1, 2, 3, ...
 – Functions: +, -, *, /, ...
 – Predicates: >, <, ...
 – Examples of wffs: \((x, y) \rightarrow> (+ (x, 1), y)\)
 Or the familiar notation: \(x > y \rightarrow x + 1 > y\)
 Another example: \(x != z \rightarrow (x + 1) != (x + 1) * z\)

• Sets
 – Object constants: \{1\}, \{2, 3\}, ...
 – Functions: \(\cup, \cap, \ldots\)
 – Predicates: \(\subseteq, \subset, \ldots\)
 – A wff: \((x \cap y) \subseteq (x \cup y)\)
More Examples

• Our world
 – Object variables: X, Y, ...
 • upper case in PROLOG
 – Constants such as: john, mary, book, fish, flowers, ...
 • Note lower case in PROLOG
 – Functions: distance(point1, X), wife(john)
 – Predicates: owns(book, john), likes(mary, flowers), ...
 – true and false in PROLOG
 • Relative to PROLOG’s knowledge of the world
 • False whenever it cannot find it in its database of facts (and rules)