COSC5910

XXX
YYY

Winter 2004



Table of Content

The Problem

User’'s Guide
Programmer’s Guide
Design & Implementation
Error Checking

Testing

Conclusions

Code Listing

ONOOAWNE

1. The Problem

The purpose of this program is to implement twolvkelown option pricing models
(Black-Scholes model and Cox-Ross-Rubinstein maated) compare the results generated
by them to the prices actually being observed m rarket. Automating the inputs to
allow for large samples of data is important asriwlels are computationally intensive.
As option prices for each specific company may fifected by factors specific to that
company, it is necessary to test the models agaimahge of different companies. The
models do not incorporate the effect of dividendghey work most accurately on stocks
which do not pay dividends. The program is setouprice only call options.

2. User's Guide

The main inputs for the OptionPrice program areadades obtained from the Montreal
Stock Exchange (ME) websitéttp://www.me.org These files contain the close of day
prices on a single date for all options issued doparticular stock. The steps for
downloading these files are as follows.

1. Click the <OK> box next to the input for quotes ntiee top center of the page.

2. Click the “Historical data” tag on the right handesabout halfway down the page.

3. Use the “Downloading end-of-day data in Excel C®¥hfat” section at the bottom of
the page. Choose an option from the drop down medfnter start and end dates that
are the same (The OptionPrice program accepts ariyngle day’'s data at a time).
Click on the <DOWNLOAD> button. Name and save titeih .txt format. We found
that naming the file its stock symbol works welb{g add date identifier to name if
doing multiple runs for the same option). The §tould be saved in the same folder as
the programs are stored in order to avoid havingpecify long path nhames when
operating the program. Samples of these files (BUPCLS.txt, JDU.txt, WJA.txt)
have been provided for testing purposes.

Running OptionPrice:



The first prompt is for the risk free interest ratedecimal format (i.e. 4% should be
entered as .04). The input for this prompt is dagmon the user’s expectation of what
annual rate an investor could expect to earn oroaisk or relatively low risk
investment. We found that .035 worked well. A déffaate of .04 will be used if the
user does not wish to specify a rate.

The user must supply the stock symbol of the stockvhich the program is to be run
(bld , cls, wja, jdu for the sample files). Thigut is not case-sensitive.

The name of the input file to be used must be edter

The name of the output file to be used must beredtd-or convenience an output file
called price.txt is provided if the user does nashwto specify the filename. This
filename is also provided as a default input optiothe program Statistics.

Enter a Y (not case sensitive) if the results arbe appended to a previous run of the
program. Any other input results in any previowstents of the output file being
over-written. The Y must be used in order to pssc@multiple stocks in a single run of
the Statistics program.

The date that the data is for must be entered &éyser in the format specified. (The
sample data provided is all for 2004-04-27)

. The number of calendar days is entered by the #destock market opening days

within this number of days prior to the data datwsed in the volatility calculation.
The user is provided with the price of the undedystock and the calculated volatility
for the specified period. Depending upon the sizia® input file there may be a slight
pause at this time while each option is priced thedoutput is written to the file.

Running Statistics:

Program Statistics must be run only using inpuesfilproduced by the program
OptionPrice.

1.

2.

3.

The name of the input file must be entered. A défaption matching the default of

the OptionPrice program is provided.

The output of the program is provided on the screender spread indicates that the
model predicted a price that is less than the bickpobserved in the market. Within

spread indicates that the model has priced theomwputithin the range of prices

currently seen in the market, while over spreadcatds an overpricing relative to the
ask spread. The average percentage error is exafilweh of the expected error for each
model on the data set provided. A negative nunbére percentage of the bid price
by which the model under-estimates while a positiuenber is the percentage of the
ask price by which the model over-estimates.

Programmer's Guide

See documentation within the source code.



4. Design & Implementation

The intention was to develop a testing methodolimgythe two models that would allow
the user to obtain statistically significant resufor each method’s accuracy with a
minimum of inputs. The required information coulot be extracted from the ME using a
Java screen scraper. As the information was dlailamn an Excel CSV format for
download we modified our inputs to accept datéhia tormat. The goal was to minimize
the number of additional inputs that would be reepliifrom the user at runtime. To this
end, an algorithm was developed to allow for thegpof the underlying stock on the data
date and the volatility to be obtained from histalidata obtained from the Yahoo web-
site. Appendix A outlines the procedure useditaim a suitable date range with minimal
input from the user.

The algorithm for calculating the volatility appedo be a little drawn out. Two loops are
required. The first calculates the average ofpéwod’s daily price changes. The second
calculates the square of the difference betweeh datdy price change and the average
daily price change. After the second loop, the sdithe squared differences is divided by
the number of entries used in the calculation &edsjuare root of the result is calculated.
The result of this calculation is then multiplieg the square root of 252 in order to
convert the result (which is a daily volatility)ttnan annualized volatility (It is assumed
252 business days in a year) as required by tieengrmodels.

The user is prompted to supply input and outpesfand to specify whether to append the
output to an existing file in order to increasexiftélity in testing various data sets.

Within the OptionPrice program more data fieldsnthare currently utilized by the

Statistics program are recorded in the output fields such as the stock ticker symbol,
the number of days to maturity of the option anel dption strike price are recorded for
possible future additions to the statistics prograixamples of possible additions are
checking whether the models perform better on optiwith a longer time to expiry or a
shorter time to expiry and/or checking whether tpage options with a strike price near
to the current price better than those with a stpkice far from the current price.

The programs were developed in a modular formawatlg parallel development and
testing to occur. Only when the output of a depetb section could be obtained in the
required format was that section added to mainnarag The modules were developed in
the following sequence:

a. B-S model



b. CRR model

c. Data extraction from ME file

d. Statistics program

e. Data extraction from Yahoo

f. Calculation of historical volatility

g. Calculation of data range from user supplied days.

5. Error Checking

Due to time constraints explicit error checking loaty been implemented in the section
where a connection to Yahoo for data extractioressablished. Error messages are
displayed for the user if a connection cannot kaiabd or the data extraction fails.

The general structure of the programs was develtp@dinimize the possible sources of
error. The number of inputs from the user wereiced to as few as possible and prompts
with easy to follow instructions were provided. f&dt entries were provided where
appropriate to reduce the necessary inputs evémefur Input data and files were obtained
from reliable sources where the data is easilyiobthin a standard format. The inputs to
the Statistics program are protected from manyrerg utilizing only files produced by
the OptionPrice program.

6. Testing
As our programs use files for inputs with a minimafruser inputs a test harness was not
required. The default options on user inputs mhadddst runs quick to initiate.

The B-S model is a set of standard algebraic foasthat requires 5 inputs. In developing
the code for this model we simply converted thenigas into Java code and prompted for
each of these inputs with a hard-coded defaultoapfiater removed). Results were
checked against the results from an interactivdiren-calculator for the B-S model,
http://www.margrabe.com/OptionPricing.html

As the CRR model is a class obtained from the U fihance department website, limited
testing was required. We tested the CRR resultgdasonableness against the results
from our B-S model. The prices obtained in ourtfmss were wildly off indicating that
there was a problem with the format of an inputs tAese problems were corrected the
prices became similar in scale. One input requingthe CRR model that is not required
by the B-S model is DT (Delta T). This represetite number of time steps to be
simulated in the model. As the DT is increasedabeuracy of the model is supposed to
increase but a significant deterioration in prooesspeed occurs. Trial and error was
used to settle on 64 as sufficiently accurate wittzosignificant delay.



For the file extraction modules we simply compatfeel extracted data visually to the file
or screen source to ensure that that the correddisfivere being accessed.

The volatility calculation was tested by enterihg number of calendar days that would
result in the 30 business days previous to thesatigtate being downloaded from Yahoo.
The current 30-day historical volatility for eadlock is available on the ME web-site. We
simply compared our calculated volatility to thealculated volatility. As we were
accurate to greater than 2 decimal places in aesave are confident that we have
implemented the algorithms correctly.

The calculation of date ranges was tested by emtatifferent start dates and number of
days and obtaining a date range. Excel was ussediiact the starting and ending days
from each other and the result compared to the rumbdays entered. Testing included
dates that overlapped year and month ends to easaueacy.

7. Conclusions

The tested models seem to be about equally eféecivestimating the prices of the
options. They both tend to over or under estinaatdie same time. Whether they over or
under estimate is stock specific. The models teraVerprice call options on stocks which
the market expects to go down and under price thuoasethe market expects to increase.
As larger samples of options based on differertkst@re entered the bias towards over or
underestimating disappears. This indicates thgeasral models they work well.

Both models are for an ideal world and as suchsabgect to the estimates used as inputs.
The interest rate is an estimate while the hisabnolatility is how much the price of the
underlying stock varied in the past. However, treekat price is based upon how much the
market expects the price of the underlying stockay in the future.

Our program works well and provides data entiregpsistent with the theories taught in
our finance program. We achieved essentially althef goals as outlined in our project
proposal. We decided not to calculate the implielgtility from the current option prices
as this information is available directly from thi& website.

8. Code Listing
The classes OptionPrice and Statistics are forvdandth this package.




Appendix A
Calculating the Date Range for Volatility

The OptionPrice program gets a text file with arusgeecified number of dates in order to
calculate the annualized volatility of the undertyiasset. This parameter is necessary
for the calculation of both the Cox Ross Rubins{€@RR) model and the Black-Scholes
(BS) model.

The Date Range Procedure

This module prompts the user to give the optioraddate and the number of past
calendar days to be considered for the volatil#ticalation. The datelnput variable is the
date string. The calculation of the dates usearaing function to recognize the year,
month and day string fragments and change themintégers. They are inputYear,
inputMonth and inputDate, respectively. It is imjaot to note at this point that normal
date format begins counting at January from thebmri. Java begins counting from
January at 0. Therefore we use the variable inpatvMJava (inputMonth — 1) to

translate the user’s input into Java format. Thaables inputYear, inputMonthinJava
and inputDate are used to find the first date m TlargetUrl variable string that queries
for the stock text file.

GregorianCalendar is used to create a calendaniostlastDate which will be used to
create the final date in the date range. The GiagBalander is set at the current date
using the above three variables and the lastDatf.adethod is used to find the final
date in the date range. The range is defined byé#riable period. The new date is
placed in the format yyyy.MM.dd given by the vatabstring pattern using the
getinstance() method in the DateFormat class. fbnmatted date is assigned the string
variable pastDate. The variable pastDate is paaseddhe variables pastYear, pastMonth
and pastDate are created. Again, date format vengiin the regular form, so
pastMonthinJava is used to translate the variaidteJava format.

These variables in addition to the ticker symbel ased in the string TargetUrl to get the
text file with the specified information.



