
CSE-4411: Database Management Systems 1

Evaluation of Relational
Operations

Chapter 14: Joins (Part A)

CSE-4411: Database Management Systems 2

Relational Operations

� We will consider how to implement:

� Selection (�) Selects a subset of rows from relation.

� Projection (�) Deletes unwanted columns from relation.

� Join (join) Allows us to combine two relations.

� Set-difference (�) Tuples in reln 1, but not in reln 2.

� Union (�) Tuples in reln 1 and in reln 2.

� Aggregation (SUM, MIN, etc.) and GROUP BY

� Since each operator (''op'') returns a relation, ops
can be composed! After we cover the operations,
we will discuss how to optimize queries formed by
composing them.

CSE-4411: Database Management Systems 3

Schema for Examples

� Similar to old schema; rname added for variations.

� Reserves:
� Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.

� Sailors:
� Each tuple is 50 bytes long, 80 tuples per page, 500

pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

CSE-4411: Database Management Systems 4

Equality Joins With One Join Column

� In algebra: R join S. Common! Must be carefully
optimized. R � S is large; so, R � S followed by a
selection (�) is inefficient.

� Assume: M tuples in R, pR tuples per page, N

tuples in S, pS tuples per page.

� In our examples, R is Reserves and S is Sailors.

� We consider more complex join conditions later.

� Cost metric: # of I/Os. We will ignore output costs.

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid = S1.sid

CSE-4411: Database Management Systems 5

Simple Nested Loops Join

� For each tuple in the outer relation R, we scan the
entire inner relation S.
� Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os.

� Page-oriented Nested Loops join: For each page of
R, get each page of S, and write out matching pairs
of tuples <r, s>, where r is from an R-page and S
is from an S-page.
� Cost: M + M*N = 1000 + 1000*500

� If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == s j then add <r, s> to result

CSE-4411: Database Management Systems 6

Index Nested Loops Join

� If there is an index on the join column of one
relation (say S), can make it the inner and exploit
the index.
� Cost: M + ((M*pR) * cost of finding matching S tuples)

� For each R tuple, cost of probing S index is about
1.2 for hash index, 2-4 for B+ tree. Cost of then
finding S tuples (assuming Alt. (2) or (3) for data
entries) depends on clustering.
� Clustered index: 1 I/O (typical); unclustered: up to 1

I/O per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == s j do

add <r, s> to result

CSE-4411: Database Management Systems 7

Examples of Index Nested Loops

� Hash-index (Alt. 2) on sid of Sailors (as inner):
� Scan Reserves: 1000 page I/Os, 100*1000 tuples.

� For each Reserves tuple: 1.2 I/Os to get data entry in
index, plus 1 I/O to get (the exactly one) matching
Sailors tuple. Total: 220,000 I/Os.

� Hash-index (Alt. 2) on sid of Reserves (as inner):
� Scan Sailors: 500 page I/Os, 80*500 tuples.

� For each Sailors tuple: 1.2 I/Os to find index page with
data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5
reservations per sailor (100,000 / 40,000). Cost of
retrieving them is 1 or 2.5 I/Os depending on whether
the index is clustered.

CSE-4411: Database Management Systems 8

Block Nested Loops Join

� Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ''block'' of outer R.
� For each matching tuple r in R-block, s in S-page, add

 <r, s> to result. Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

CSE-4411: Database Management Systems 9

Examples of Block Nested Loops
� Cost: Scan of outer + #outer blocks * scan of inner

� #outer blocks =

� With Reserves (R) as outer, and 100 pages of R:
� Cost of scanning R is 1000 I/Os; a total of 10 blocks.

� Per block of R, we scan Sailors (S); 10*500 I/Os.

� If space for just 90 pages of R, we would scan S 12
times.

� With 100-page block of Sailors as outer:
� Cost of scanning S is 500 I/Os; a total of 5 blocks.

� Per block of S, we scan Reserves; 5*1000 I/Os.

� With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R
and S.

 # /of pages of outer blocksize

CSE-4411: Database Management Systems 10

Merge Join (R join S)

� First, sort R and S each on the join column. Then,
scan the sorted ''R'' and ''S'' to do a ''merge'' (on the
join column), and output resulting join tuples.
� Advance scan of R until current R-tup � current S tup;

then advance scan of S until current S-tup � current R
tup; do this until current R tup = current S tup.

� At this point, all R tuples with same value in Ri (current
R group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

� Then resume scanning R and S.

� R is scanned once; each S group is scanned once
per matching R tuple. (Multiple scans of an S
group are likely to find needed pages in buffer.)

i=j

CSE-4411: Database Management Systems 11

Example of (Sort) Merge Join

� Cost: M log M + N log N + (M+N)
� The cost of scanning, M+N, could be M*N (unlikely!)

� With 35, 100 or 300 buffer pages, both Reserves
and Sailors can be sorted in 2 passes; total join
cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost: 2500 to 15000 I/Os)
CSE-4411: Database Management Systems 12

Refinement of Merge Join: 2-pass SMJ

� We can combine the merging phases in the sorting
of R and S with the merging required for the join.
� With B > , where L is the size of the larger relation,

using the sorting refinement that produces runs of
length 2B in Pass 0, #runs of each relation is < B/2.

� Allocate 1 page per run of each relation, and ''merge''
while checking the join condition.

� Cost: read+write each relation in Pass 0 + read each
relation in (only) merging pass (+ writing of result
tuples).

� In example, cost goes down from 7500 to 4500 I/Os.

� In practice, cost of sort-merge join, like the cost of
external sorting, is ''linear''.

L

CSE-4411: Database Management Systems 13

Hash-Join

� Partition both
relations using
hash fn h: R
tuples in partition
i will only match S
tuples in partition
i.

� Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions

of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original

Relation
OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

CSE-4411: Database Management Systems 14

Observations on Hash-Join
� #partitions k < B-1, and B-2 > size of largest

partition to be held in memory. Assuming
uniformly sized partitions, and maximizing k:
� k= B-1, and M/(B-1) < B-2; i.e., B must be >

� Note that ''M'' (the outer) can be the smaller table!

� If we build an in-memory hash table to speed up
the matching of tuples, a little more memory is
needed.

� If the hash function does not partition uniformly,
some R partitions may not fit in memory. Can
apply hash-join technique recursively to do the join
of this R-partition with corresponding S-partition.

M

CSE-4411: Database Management Systems 15

Cost of Hash-Join

� In partitioning phase, read+write both relns; 2
(M+N). In matching phase, read both relns; M+N
I/Os.

� In our running example, this totals at 4500 I/Os.

� (2-pass) Sort-Merge Join vs. (2-pass) Hash Join:
� Given a minimum amount of memory (what is this, for

each?) both have a cost of 3(M+N) I/Os.

� Hash Join is better if the two table sizes differ greatly.
Also, Hash Join can be highly parallelized.

� Sort-Merge is immune to data skew. And the result
stream is sorted! (So?...)

CSE-4411: Database Management Systems 16

General Join Conditions

� Equalities over several attributes
(e.g., R.sid=S.sid AND R.rname=S.sname):
� For Index NL, build index on <sid, sname> (if S is inner);

or use existing indexes on sid or sname.

� For Sort-Merge and Hash Join, sort/partition on
combination of the two join columns.

� Inequality conditions (e.g., R.rname < S.sname):
� For Index NL, need a B+ tree index that is clustered or

that can be used in index-only mode for the probes.
	 Range probes on inner; # matches likely to be much higher

than for equality joins.

� Neither Hash Join or Sort Merge Join is applicable.

� Block NL quite likely to be the best join method here.

