
CSE-4411

Database Management Systems

York University

Parke Godfrey

Fall 2005

CSE-4411—Database Management Systems—Godfrey – p. 1/16

CSE-3421 vs CSE-4411

CSE-4411 is a continuation of CSE-3421, right?
More of the same, eh?

Ha! No way.

In this class, we focus on how tobuild a database system.
In CSE-3421, we focused on what functionality a database
system provides, and how touseit.

CSE-4411—Database Management Systems—Godfrey – p. 2/16

Data Independence

• Do not need to know how acompilerworks to write a
program.

• Do not need to know how anoperating systemis built to
use one.

• Don’t need to know how acar works to drive one.

• Don’t need to know how adatabase systemis built to use it.

• physical data independence: how the data islogically
organized is independent of how it isphysicallyorganized.
(There is alsological data independence. . .)

• Codd’s law : Can only access and update the database via
the “query language” (SQL).

• SQL is adeclarativelanguage.

CSE-4411—Database Management Systems—Godfrey – p. 3/16

How to build a Database System?

Okay, more specifically, arelationaldatabasemanagement
system(RDBMS).

E.g., Oracle, IBM DB2, Microsoft SQL Server, Informix,
MySQL, & Postgres.

In this class, we’re going to build our own

system!

CSE-4411—Database Management Systems—Godfrey – p. 4/16

How to build a Database System?
What is involved?

Whatfunctionalitydo we need to support?

E.g., SQL

What are ourdesign criteria?
Should be fast. (At what?)
Must handle updates to the database and read-only
queries efficiently.
(Trade-offs involved!)

What are ourdesign choices? Ourdesign constraints?
How will the available technology affect our design
(architecture)?
E.g., Main memory technologies (like CMOS) are
volatile.

CSE-4411—Database Management Systems—Godfrey – p. 5/16

I. The Physical Database
Storage & Access

Ensure that data is permanent and safe.

Goals:

• permanence

• fast, random access

• fault tolerance (to supportcrash recovery)

Design questions:

• What devices / technology do we use?

• What data-structures do we use?
How do we access given pieces of data quickly?

CSE-4411—Database Management Systems—Godfrey – p. 6/16

II. The Query Processor

How to evaluate (SQL) queries efficiently? We need a
• query parser

• plan generator (and query optimizer)
Turns a valid SQL query into a “program” that answers
the query.

• query plan evaluator

Problems:
• SQL is reasonably complex.

• Not all (equivalent) queries are equal.
Some queries / query plans will evaluate inherently must
faster.

Big issue:
• How to “pick”, or design, a good query plan for a query?

CSE-4411—Database Management Systems—Godfrey – p. 7/16

A “Complex” Query

SupplierS: A (name),C (city)

RetailerR: B (name),C (city)

Query: Which supplier has a location in every city of a
retailer? Show such supplier (A) / retailer (B) pairs.

{〈A,B〉 | ∀C(〈B,C〉 ∈ R → 〈A,C〉 ∈ S)}

πA,B(R × S) − πA,B(πA,B,C(πA(S) × R) − R ⋊⋉ S)

CSE-4411—Database Management Systems—Godfrey – p. 8/16

A “Complex” Query
in SQL

select A, B from R, S
except
select A, B from (

select S.A, R.B, R.C from R, S
except
select S.A, R.B, R.C

from R, S
where R.C = S.C) as Z;

Any problems?

CSE-4411—Database Management Systems—Godfrey – p. 9/16

A “Complex” Query
Better?

select A, B
from R, S
where R.C = S.C

except
select A, B from (

select S.A, R1.B, R2.C
from R as R1, R as R2, S
where R1.C = S.C and R1.B = R2.B

except
select S.A, R.B, R.C from R, S

where R.C = S.C
) as Z;

CSE-4411—Database Management Systems—Godfrey – p. 10/16

A “Complex” Query
cleaned up

with
J (A, B, C) as (

select S.A, R.B, R.C
from R, S
where R.C = S.C)

select distinct A, B from J
except
select J.A, J.B

from J, R
where J.B = R.B and

(J.A, J.B, R.C) not in
(select A, B, C from J);

CSE-4411—Database Management Systems—Godfrey – p. 11/16

A “Complex” Query
via COUNT

select J.A, J.B
from (select S.A, R.B, count(*) as Cs

from R, S
where R.C = S.C
group by S.A, R.B) as J,

(select B, count(*) as Cs
from R
group by B) as K

where J.B = K.B and
J.Cs = K.Cs;

CSE-4411—Database Management Systems—Godfrey – p. 12/16

The Query Optimizer

• Rewrite
– Rewrites the query into something “simpler”, but means

the same thing.

• Cost-based
– Determine a “best” over-all query tree.
– Pick the bestaccess pathfor each table involved.
– Assign the “best” algorithm to each operator (⋊⋉, π, σ,

. . .).

CSE-4411—Database Management Systems—Godfrey – p. 13/16

III. Database Management

• transaction management
– How do we ensure updates are

made to the database
correctly?

• concurrency control
– How do we ensure that multiple

X-act’s occuring
“simultaneously” are treated
correctly?

• crash recovery
– How do we recover from

failures? (E.g., ARIES)

Properties:

• Atomicity

• Consistency

• Isolation

• Durability

CSE-4411—Database Management Systems—Godfrey – p. 14/16

Buliding a Database System
Anything we miss?

• host language support
e.g., JDBC

• data definition language
(DDL)
e.g.,CREATE TABLE . . .

• administrative functions
(for DBA’s) & security
e.g.,GRANT . . .

• . . .

What pieces / modules do
we need to implement all
this?
What’s our architecture?
Need a

• need a query optimizer

• a transaction manager
– a lock manager for

concurrency control

• a crash recovery
mechanism

• . . .

CSE-4411—Database Management Systems—Godfrey – p. 15/16

Buliding a Database System
Why study this?!

It’s fun!

Somewill get a job building RDBMSs.
E.g., at IBM Toronto Laboratory (for DB2)

Cannot be agoodDB Administratorwithoutunderstanding
how the system works.

Can be a better DB programmer when you understand how
the system works.

Lots of places are building database-like systems.
Can reuse the techniques and technologies from RDBMSs.

CSE-4411—Database Management Systems—Godfrey – p. 16/16

