Hush-Based Indexes

Chapter 11

CSE-3421: Database Management Systems 1

Static Hashing

« # primary pages fixed, allocated sequentially,
never de-allocated; overflow pages if needed.

< h(k) mod M = bucket to which data entry with
key k belongs. (M = # of buckets)

A0 T -
h(key) mod N .
key J
1 N1 Lb— ...
Primary bucket pages Over f | ow pages

CSE-3421: Database Management Systems 3

Introduction

< As for any index, 3 alternatives for data entries k*:
® Data record with key value k
® <k, rid of data record with search key value k>
® <k, list of rids of data records with search key k>
® Choice orthogonal to the indexing technique
«» Hash-based indexes are best for equality selections.
Cannot support range searches.
< Static and dynamic hashing techniques exist; trade-
offs similar to ISAM vs. B+ trees.

CSE-3421: Database Management Systems 2

Extendible Hashing

« Situation: Bucket (primary page) becomes full. Why
not re-organize file by doubling # of buckets?
® Reading and writing all pages is expensive!
® [dea: Use directory of pointers to buckets, double # of

buckets by doubling the directory, splitting just the bucket
that overflowed!

® Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split. No
overflow page!

® Trick lies in how hash function is adjusted!

CSE-3421: Database Management Systems 5

Static Hashing (Contd.)

< Buckets contain data entries.
< Hash fn works on search key field of record r. Must
distribute values over range 0 ... M-1.
® h(key) = (a * key + b) usually works well.
® 3 and b are constants; lots known about how to tune h.
< Long overflow chains can develop and degrade
performance.

® Extendible and Linear Hashing: Dynamic techniques to fix
this problem.

CSE-3421: Database Management Systems 4

LOCAL DEPTH L—>

GLOBAL DEPTH o 127 32r 16| BucketA

Example ==

% Directory is array of size 4.
« To find bucket for r, take
last 'global depth' # bits of h
(r); we denote r by h(r).
® If h(r) =5 =binary 101,
it is in bucket pointed to
by 01.

Bucket B

Bucket C

DIRECTORY
Bucket D

‘DATA PAGES

-Insert: If bucket is full, split it (allocate new page, re-distribute).

- If necessary, double the directory. (As we will see, splitting a
-bucket does not always require doubling; we can tell by
- comparing global depth with local depth for the split bucket.)

CSE-3421: Database Management Systems 6




Insert h(r)=20 (Causes Doubling)

oA -2
D - Tt
GL.OBAL DEPTH A 32716 GLCBAL DEPTH 32*16* Bucket A

+ 5+ 21+13+| BucketB
00 1* 5% 21%13 00| 7| 1* 5% 21*13" BucketB
o oo1 |_—]
10 010 ‘
1 BucketC
011 - * BucketC

DIRECTORY 101
Bucket D
315+ 7+ 19+ .
110 15 719 Bucket D
111
Bucket A2
4* 12* 20*
20 ("splitimage’ DIRECTORY Bucket A2
of Bucket A) (splitimage’

of Bucket A)

CSE-3421: Database Management Systems 7

Points to Note

< 20 =binary 10100. Last 2 bits (00) tell us r belongs in
A or A2. Last 3 bits needed to tell which.
® Global depth of directory: Max # of bits needed to tell which
bucket an entry belongs to.
® [ocal depth of a bucket: # of bits used to determine if an entry
belongs to this bucket.
< When does bucket split cause directory doubling?
® Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by copying it over and 'fixing' pointer to split image
page. (Use of least significant bits enables efficient
doubling via copying of directory!)

CSE-3421: Database Management Systems 8

Directory Doubling

*Why use least significant bits in directory?
+Allows for doubling via copying!

6=110 6=110

Least Significant vs. Most Significant
CSE-3421: Database Management Systems 9

Comments on Extendible Hashing

+ If directory fits in memory, equality search
answered with one disk access; else two.
® 100MB file, 100 bytes/rec, 4K pages contains 1,000,000
records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.
® Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.
® Multiple entries with same hash value cause problems!
% Delete: If removal of data entry makes bucket
empty, can be merged with ' plit image'. If each
directory element points to same bucket as its split

image, can halve directory.
CSE-3421: Database Management Systems 10

Linear Hashing

« This is another dynamic hashing scheme, an
alternative to Extendible Hashing.
< LH handles the problem of long overflow chains
without using a directory, and handles duplicates.
< Idea: Use a family of hash functions hy, h;, h,, ...
® h (key) = h(key) mod(2!N); N = initial # buckets
® h is some hash function (range is nof 0 to N-1)
® If N =2, for some d0, h; consists of applying h and looking
at the last di bits, where di = d0 +i.
® h, , doubles the range of h, (similar to directory doubling)

CSE-3421: Database Management Systems 11

Linear Hashing (Cont.)

« Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin.

® Splitting proceeds in rounds'. Round ends when all N
initial (for round R) buckets are split. Buckets 0 to Next-
1 have been split; Next to N, yet to be split.

® Current round number is Level.

® Search: To find bucket for data entry 7, find h,, ():

= Ifh, . ,(r) in range 'Next to N/, r belongs here.

= Else, r could belong to bucket h,(r) or bucketh,
(r) + Ng; must apply h,....,(r) to find out.

CSE-3421: Database Management Systems 12




Overview of LH File

« In the middle of a round.

Buckets split in this round:
<J If h evel (search key value )

is in this range, must use

h | evel+1 (search key value )

to decide if entry is in

“split image’ bucket.

Bucket to be split ’7
Next

I

Buckets that existed at the
beginning of this round:
this is the range of

hLevel

“split image' buckets:
<J created (through splitting

of other buckets) in this round

CSE-3421: Database Management Systems 13

Example of Linear Hashing

< Onsplit, h,,,,is used to
re-distribute entries.

Levei=0, N=4 Level=0
h h PRIMARY h h PRIMARY OVERFLOW
1 o N\exl:O PAGES . 1 o PAGES PAGES
o | | T w | @
001 | o1 ﬂ! wih RS %S 001 | o1 \
oo | 10| [242f0%9 prirary owo | 10| [4f2efofao]
bucket ~ page
o1 | 1 o1 | 1 ol TT]
(Thisinfo (Theactual content
isfor lludraion  of thelinear nashed 100 | oo [safse] [ ]
only!) file)

CSE-3421: Database Management Systems 15

Linear Hashing (Contd.)

% Insert: Find bucket by applying h,,,., / hy,...:
® [If bucket to insert into is full:
= Add overflow page and insert data entry.
= (Maybe) Split Next bucket and increment Next.
+ Can choose any criterion to “trigger” split.
< Since buckets are split round-robin, long overflow
chains don't develop!
+ Doubling of directory in Extendible Hashing is
similar; switching of hash functions is implicit in how
the # of bits examined is increased.

CSE-3421: Database Management Systems 14

LH Described as a Variant of EH

+ The two schemes are actually quite similar:
® Begin with an EH index where directory has N elements.
® Use overflow pages, split buckets round-robin.
® First split is at bucket 0. (Imagine directory being doubled at
this point.) But elements <1,N+1>, <2,N+2>, ... are the same.
So, need only create directory element N, which differs from
0, now.
= When bucket 1 splits, create directory element N+1, etc.
< So, directory can double gradually. Also, primary
bucket pages are created in order. If they are allocated
in sequence too (so that finding i-th is easy), we
actually don't need a directory! That is LH.

CSE-3421: Database Management Systems 17

Example: End of a Round

Level=1
PRIMARY OVERFLOW
h1 | ho PAGES PAGES
Next=0
e wlw SE]
PRIMARY OVERFLOW
hy | ho PAGES PAGES o1 | o T
000| 00 !
010 | 10 66" 18" 10 34
001| 01
011 | 11 335 1T
010| 10 [66*18*10* 347]
Next=3
| o
on| 1| {eresz 1] _
100/ 00 1 5 37 29
101 o1 5% 37429 110 | 10| 14* 30* 22*
wo| | (02 w | u

CSE-3421: Database Management Systems 16

Summary

< Hash-based indexes: best for equality searches,
cannot support range searches.
+ Static Hashing can lead to long overflow chains.
< Extendible Hashing avoids overflow pages by
splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow pages.)
® Directory to keep track of buckets, doubles periodically.

® Can get large with skewed data; additional I/O if this does
not fit in main memory.

CSE-3421: Database Management Systems 18




Summary (Cont.)

< Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages.
® Overflow pages not likely to be long.
® Duplicates handled easily.

® Space utilization could be lower than Extendible Hashing,
since splits not concentrated on 'dense' data areas.
= Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.
« For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

CSE-3421: Database Management Systems 19




