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5.1.1. Elimination of Structure Unknowns

Since we assume rigidity we know that the motion can be represented by a rotation
and a translation

(5.1)P′ = RP+ T

whereP andP′ are the position vectors of a world point before and after the motion,R is
the rotation matrix andT is the translation vector. In the relative orientation problem all
of them are unknowns. From the projective equations we have

p′ =
P′
Z′

and

p =
P

Z

where p and p′ are the projections of the world points on the image plane andZ andZ′
are thez-coordinates of pointsP and P′ respectively. Vectors p and p′ are the only
knowns in this problem since we can measure them on the image. If we eliminate the
world points then Eq. (5.1) becomes

(5.2)Z′p′ = ZRp+ T.

Now we hav eone equation wherep and p′ are knowns and all the rest are unknowns. The
unknowns are of two kinds: structure unknowns that are related to the structure of the
scene, e.g. the position of the points viewed, and motion unknowns which describe the
motion.Z andZ′ belong to the first kind of unknowns and there are two of them for each
point in the scene. The motion parameters belong to the second kind and are independent
of the number of points in the scene.

To solve the problem we have to start eliminating unknowns. The strategy we follow
is to eliminate all the per-point unknowns and get an equation independent of structure.
Before we do this let us look at the balance of equations first. Eq. (5.2) is a vector equa-
tion that is equivalent to 3 scalar equations. If we eliminate the two structure unknowns Z
andZ′ we have only one equation left.

To eliminate theZ′ we can use a property of the cross product that says that the
cross product of a vector with itself is the zero vector:

a × a =
→
0

and multiply both sides of Eq. (5.2) byp′

Z′p′ × p′ = Z(Rp) × p′ + T × p′ = 0

and we still have a vector equation that is equavalent to 3 scalar ones (but they are not
independent anymore) and one less unknown. We can eliminate the remaining unknown
by using a property of the dot product that says that the dot product of two orthogonal
vectors is equal to zero. We know that the cross product ofT and p′ is another vector that
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is orthogonal to bothT and p′. So if we take the dot product of both sides withT we have

0 = Z

(Rp) × p′


⋅ T + 


T × p′


⋅ T = Z


(Rp) × p′


⋅ T.

Now assumingZ is not equal to zero (otherwise the object would be way too close to our
camera) we get

(5.3)

(Rp) × p′


⋅ T = 0.

We now hav eone scalar equation whose unknowns are the motion parameters. We can
simplify things a bit more if we notice that Eq. (5.3) is atriple scalar product. Recall that
one of the definitions of the cross product of two vectors

V1 =





a1

b1

c1






and

V2 =





a2

b2

c2






is equal to the following depterminant

(5.4)

V1 × V2 =





x̂

a1

a2

ŷ

b1

b2

ẑ

c1

c2






=

(b1c2 − b2c1) x̂ + (c1a2 − c2a1)ŷ + (a1b2 − a2b1)ẑ =






b1c2 − b2c1

c1a2 − c2a1

a1b2 − a2b1






where x̂, ŷ, ẑ are the unit vectors along the corresponding axes. IfV3 is

V3 =





a3

b3

c3






= a3 x̂ + b3 ŷ + c3ẑ

then, the triple scalar product ofV1, V2, V3 can be written as

(V1,V2,V3) = (V1 × V2) ⋅ V3 =





a3

a1

a2

b3

b1

b2

c3

c1

c2
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allowing the well known properties of the determinants can be applied here. Every time
we swap two rows the determinant changes sign and in our case if we swap two vectors
then the left hand side of (5.3) should stay zero. If we apply this property a couple of
times we get

(5.5)p′ ⋅ (T × (Rp)) = 0.

Time now for yet another representation of the cross product. Eq. (5.4) can be rewritten in
matrix form as

V1 × V2 =





b1c2 − b2c1

c1a2 − c2a1

a1b2 − a2b1






=





0

c1

−b1

−c1

0

a1

b1

−a1

0











a2

b2

c2






We can also write the dot product in matrix form:

V1 ⋅ V2 = V1
TV2 = V2

TV1.

Using the above notation we can write (5.5) as

p′TT̃ Rp = 0

where

T̃ =





0

tz

−ty

−tz

0

tx

ty

−tx

0






and

T =





tx

ty

tz






and if we do the substitution

(5.6)E = T̃ R

we finally arrive at

(5.7)p′T Ep = 0

which is the celebratedepipolar constraint and in various forms has been reinvented
many times in the history of science and engineering.

The epipolar constraint Eq. (5.7) is a very convenient equation because it is linear in
terms of the elements ofE so we can compute it from a set of point correspondences.
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5.1.2. Recovering the E-matrix

Since Eq. (5.7) is a linear equation on the elements ofE we can apply it to several
point pairs pi and p′i and get a best estimate of this matrix. But since image data are
always corrupted by noise, we need to take many more than the minimum number of
such points. The standard tool for doing that is theLeast Squares.

It is obvious that we need to do a small transformation on Eq. (5.7) to look more like
an equation. MatrixE

E =





e1

e4

e7

e2

e5

e8

e3

e6

e9






can be written as a vector

e =














e1

e2

e3

e4

e5

e6

e7

e8

e9














.

If we define vector

Ai =














x′i xi

x′i yi

x′i zi

y′i xi

y′i yi

y′i zi

z′i xi

z′i yi

z′i zi














then Eq. (5.7) can be written as

(5.8)Ai
Te = 0

This is a homogeneous equation which means that vectore = 0 satisfies it. And if a vector
e0 ≠

→
0 satisfies it, then2e0 satisfies it. In plain terms this means that we cannot say if we

are looking at an object 1 ft large, 1 ft away and the camera moved 1 inch, or the object is
two ft large, two ft away and the camera moved 2 inches. So we can only expect to
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recover structure and motion up to a scale factor. The proportions are preserved but we
cannot tell if the object is small and close or far away and large. It is not that the infor-
mation is there and we did not do the math right; it is inherently impossible to determine
the scale factor from monocular views. Humans cannot either, and cinematographers use
this to make little ships in swimming pools look like real life navies.

We will see how to handle this problem later in this section. Meanwhile we have to
solve the following problem. Image data are notoriously unreliable and vectorAi contains
image data. The only way to overcome this is to use more data than we need and the
noise in the data will cancel out. The classic approach to this isLeast Squares: we sum up
the squares of all the equations and minimize this sum

i
Σ 


Ai

Te


2

=
i
Σ 


eT Ai Ai

Te


= eT
 i
Σ Ai Ai

T

e = eT Ae

We can try to minimize the above quantity but we already know the answer. The vector
e = 0 minimizes it, but it is not what we want. There are three ways to solve this problem.
One that seems the simplest is to arbitrarily set one element ofe to 1.0 and then solve a
regular linear problem. While this has been used in practice, it it not the best because if
we are unlucky and choose an element ofe that is equal to zero, then we get an unstable
solution. The second approach is to minimize it, subject to the condition that|e| = 1. This
is a perfectly fine solution but requires the use ofLagrange Multipliers. We opt for the
third solution that is mathematicaly equivalent but a bit easier. We simply minimize

(5.9)λ =
eT Ae
eTe

which is independent of the length ofe. We now take the derivatives of λ with respect to
the elementsej of e

∂λ
∂ej

=
2(eTe)b̂ j

T
Ae − 2b̂ jeeT Ae



eTe



2 = 2
b̂ j



(eTe)Ae − eeT Ae




eTe



2

where b̂ j = ∂e/∂ej and is a nine dimensional unit vector, all elements of which are zero
except thej th which is equal to one. We know that

b̂ j


eTeAe − eeT Ae




eTe



2 = 0

for 1 ≤ j ≤ 9, in other wordseTeAe − eeT Ae has a zero projection to all nine unit vectors
b̂ j . From this we can infer that

eTeAe = eeT Ae
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or



eTe


Ae = e


eT Ae



and since the parenthesized quantities are scalars

Ae = e
eT Ae
eTe

and if we use Eq. (5.9) we get

Ae = eλ

in which casee is an eigenvector of A andλ is the corresponding eigenvalue. So the min-
imum of Eq. (5.8) is attained whene is the eigenvector of A that has the smallest eigen-
value (all eigenvalues ofA are positive).

The procedure then to finde is to form matrixA =
i
Σ Ai Ai

T , compute the smallest

eigenvalue and find the correspoinding eigenvector. This eigenvector ise.

5.1.2.1. Solving for Translation

We can recover the translationT if we notice the

TTT̃ = (T̃T)T = (T × T)T = 0

so we can infer that

(5.10)TT E = (TTT̃)R = 0

which means thatT is a vector that satisfies Eq. (5.10). Although there are simpler ways
to find such a vector we use a technique calledSingular Value Decomposition(SVD).
Any square matrixM , symmetric or not, can be decomposed into a product of three
matrices

M = USVT

whereU andV are orthonormal matrices (we can extend the definition whenM is not
square, but this is another issue). The columnsUi andVi of matricesU andV are called
left and right singular vectors.S is a diagonal matrix with all the diagonal elementsσ i

non negative. This decomposition isalmostalways unique up to some trivial transforma-
tions. We can for instance exchange the left singular vectorsUi andU j if we exchangeVi

with V j andσ i with σ j as well. Also we can replaceUi with −Ui if we replaceVi with
−V j as well. And finaly if one of the singular valuesσ k is equal to zero then we can flip
the sign of eitherUk of Vk and get away with it. There is one more complication regard-
ing the expressionalmostalways unique. On an extremely rare occasion when two singu-
lar values are identical there are infinite number of decompositions. According to Mur-
phy’s Theorem matrixE always falls under this category. Nev ertheless, despite the filthi-
est intentions of the Founding Fathers of mathematics, all these amount to a minor
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nuisance. The reason is the following. The non-uniqueness of the decomposition matters
only if we decompose two matrices and we expect some simple relation between the
respective components, which is exactly what we need to do here. But if we decompose
one of the two matrices and using the expected relation between the components to
decompose the other without calling the SVD function again, then we can make sure that
we have the right pair of decompositions.

Another way to write the decomposition is

(5.11)M =
i
ΣUiσ iV

T
i

whereUi andVi are the columns odU andV respectively andσ i are the singular values.
From Eq. (5.11) above it is easy to notice that if all singular values are non zero then
Mx ≠ 0 for all non-zero vectorsx.

Too much philosophy. Let’s do some work. We can decompose matrixE into

E = UESEVE
T

and since we know there is aT that satisfies Eq. (5.10), we know that one of the singular
values is zero. The corresponding left singular vector is parallel to the translationT. We
can “find” the magnitude ofT if we notice that

(5.12)EET = T̃ RRTT̃
T = T̃T̃

T = T21 − TTT

from which we can find the magnitude ofT. We do not need though, because the compu-
tation ofR works just fine if we do not know it but also the magnitude of thisT has noth-
ing to do with the length of the realT which is indeterminent and is always 1/2 if the vec-
tor e we computed in the previous section is a unit vector. So it does not matter if we
know it. By the way: Eq. (5.12) provides an alternative way to computeT.

5.1.2.2. Solving for Rotation Matrix

The next step is to find the rotation matrix. We know T up to a sign, but it is not that
easy to findR. AlthoughE = T̃ R, and we know T̃, T̃ is not an invertible matrix, therefore
we cannot just eliminatẽT to getR. The trick this time involves again the SVD ofE and
T̃.

We can decompose matricesE andT̃ into

(5.13)E = UESEVE
T

(5.14)T̃ = UT STVT
T.

We also know thatE = T̃ Rso

E = UT STVT
T R

and the “uniqueness” of the SVD implies that
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(5.15)

UT = UE

ST = SE

VT
T R = VE

T

or at least ifE has an SVD as per Eq. (5.13) thenT̃ has an SVD as per Eq. (5.14) and
conditions of Eq. (5.15) hold. In this case we can solve for R and get

(5.16)R = VTVE
T.

The task now is to reconstruct the SVD of Eq. (5.14) using the SVD of Eq. (5.13). The
first thing to notice is that

UT
ET̃ = UT

TUT STVT
T = STVT

T

and sinceUE and T̃ are known we now know STVT
T . Unfortunately, we know that the

first singular value ofST is zero and so eliminating it is not as simple as multiplying with
the inverse. But we know thatVT is an orthonormal matrix and every column (or row) of
an orthonormal matrix has unit length. Let’s hav ea closer look atSTVT

T and the way to
proceed will become clear.

STVT
T =









0
.. . . . . . . .

σ2V
T
2

. . . . . . . . .

σ3V
T
3









whereσ2 andσ3 are the singular values ofT̃. We know STVT
T , so we knowσ2V2, and we

also know that sigma is positive, so

V2 =
σ2V2

|σ2V2|

and similarly forV3. We also know that every column (or row) of an orthonormal matrix
is orthogonal to every other column (or row). So the first column ofVT is

V1 = s1V2 × V3

wheres1 is a yet to be determined sign. And so now we hav ea completeVT matrix, up to
a sign ambiguity. We can plug it in Eq. (5.16) and getR. Not so fast. R is a rotation
matrix, so its determinant is unity, whereas orthogonal matrices have determinants that
are±1. Furthermore, ifR satisfies our equations so does−R because matrixE itself has
sign ambiguity. So

R = s2VTVE
T

wheres2 is another yet to be determined sign. After brushing up our linear algebra we
can determine that the determinant ofR is
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|R| = s1s2 |VE| = 1

since |VT| = s1. Now we can determine the signs1

s1 = s2|VT| |VE|

which leads to two solutions for R, both with positive determinant (sometimes called
right handed rotation matrices) depending on the value ofs2.†

This completes our quest for the decomposition of the matrixE. We get a three way
sign ambiguity, one ambiguity for the translation vectorT and two for the rotation matrix
R, but we already saw that the two ambiguities for the rotation can be reduced to one
since they lead to negative determinants (also called lefthanded rotation matrices). But we
cannot do anything at this point for the rest of the ambiguities and just return two transla-
tions and two rotations. In the next stage we see how we can reject all but one of the 4
solutions.

5.1.2.3. Spurious Solutions The eight solutions that we get are not an artifact of the
particular algorithm since they hav ea physical meaning. Four of them are easy to elimi-
nate since they hav elefthanded rotation matrices (unless of course we are doing structure
from motion in front of mirror: vanity is the deadliest of the sins for Computer Visionar-
ies!). Now let’s see the

Assume that we have the correct solution. Since moving a rigid object in front of a
stationary camera is equivalent to moving the camera in front of a stationary scene, we
choose for convenience the later. We place the cameras to their correct relative position
and we draw lines from the nodal point (center of the lens) to the image point and then
extend them to the space. It is obvious that the extensions from an image point in the one
camera and its corresponding point in the other camera will intersect in space. The inter-
section is on the 3-D point that gav erise to the images (Fig. 5.1). If they did not intersect
then there is something wrong with the relative position of the cameras.

If we now rotate the second camera 180 degrees around the translation vector T,
then the corresponding extensions will remain coplanar and thus intersect. But as we
notice from Fig. 5.2, the intersection is behind the camera. So this is the one spurious
solution and can be distinguished from the presence of behind the camera points.

The number of solutions doubles if we reverse the sign of the translation. Extensions
that were coplanar before are still coplanar and as we see in Fig. 5.3 they still intersect
behind the camera.

†one can defines2 in a different way and have slightly (very slightly) simpler equations. If we defineVT as

VT =





s1V1

:

:

:

s2V2

:

:

:

s2V3






where we sets1 = |VT|.
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World points.

First solution

Nodal point of
camera after
motion

Nodal point of
camera before motion

Actual translation

Image planes

Figure 5.1: Two points are “seen” by the camera before and after motion. It is obvious that if we
draw the rays connecting the nodal point of a camera and an image and then extend
this ray into space, it will pass through the 3-D point. These extensions from two cam-
eras involving a single 3-D point, intersect each other at this point, so they are copla-
nar.
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World points.

First solution

Nodal point of
camera after
motion

Nodal point of
camera before motion

Actual translation

Second solution (spurious)
we flip the camera around T

These are behind the camera

Image planes

Figure 5.2: If we rotate the right camera (the after-motion camera) 180 degrees around the trans-
lation vector, all the rays that were coplanar with the corresponding ray in the left cam-
era before the rotation will be coplanar after the rotation and thus intersect. The inter-
section will be behind one or the other camera. This is an impossible configuration.
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World points.

First solution

Nodal point of
camera after
motion

Nodal point of
camera before motion

Actual translation

Second solution (spurious)
we flip the camera around T

These are behind the camera

Negative translation

Third solution (spurious)
the translation is -T

Forth solution (spurious)
negative T and
flipped around T

These are behind the
camera

Image planes

Figure 5.3: If we change the sign of T , then the after-motion camera moves to the other side and
ev erything is scaled by -1 including the Z distances. This way we double the number of
solutions to four. But the new ones will contain points behind the camera, so they are
spur ious.

The simple algorithm to reject the spurious solutions is as follows. Compute struc-
ture for all of the four combinations of rotations and translations and for each combina-
tion count the number of points behind the camera, both before and after the motion. The
combination with the fewest behind the camera points wins.
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6. Recovering Structure

Starting again from the rigidity Eq. (5.2)

Z′p′ = ZRp+ T.

we can assume that the motion parametersR andT are known and find the structureZ
and Z′, which are the depths of the image points. This is a vector equation equivalent to
three scalar ones, but we have two unknowns. We can easily forget the one equation and
solve for our two unknowns, but then we know this is not the best thing to do. A far better
solution is to use all three equations and find the least squares solution. So we try to mini-
mize

Q(Z′, Z) = (Z′p′ − ZRp− T)2 = (Z′p′ − ZRp− T)T(Z′p′ − ZRp− T)

from which after taking the derivatives with respect to the unknownsZ andZ′ we get

∂Q(Z′, Z)

∂Z′
= 2p′T(Z′p′ − ZRp− T) = 0

∂Q(Z′, Z)

∂Z
= 2pT RT(Z′p′ − ZRp− T) = 0

which leads to





p′T p′
−p′T Rp

−p′T Rp

pT p









Z′
Z





=




TT p′
−TT Rp





and simple matrix inversion gives us





Z′
Z





=
1

(p′T p′)(pT p) − (p′T Rp)2




pT p

p′T Rp

p′T Rp

p′T p′








TT p′
−TT Rp




.

This gives the ability to discard the spurious solutions for the motion with the following
very simple algorithm: Compute the depthsZ and Z′ for all four solutions and for each
one count the points that have at least one negative depth. The solution with the fewest
behind the camera points is the real one.

154 Ch. 9. Sec. 5. Relative Orientation


