Spetsakis Computer Vision

10. Maximum Likelihood Estimation

While the ternlikelihoodis often used as a synonym of the tgmmbability in ordi-
nary cowersation, in the extraordinary world of statistics the terms mean similarua
clearly distinct things.To se this, consider a problem where we averga data \ectorx
and asked to estimate a parametector 6. The ideal solution wuld be to find the
parameter @ctoré that maximizes the probability éfgiven datax, the so called poste-
riori probability, which is written as

p(6]x).

While this is in maw respects indeed the best approach, we will consider if kmer
focus for nav on a ®emingly lesser approach that maximizes

p(x|6)
which is called the likelihood af and is written as
L(61x)
or more often as
L(8).

The diference between the probability 8fgiven the data and the likelihood is quite
ohbvious after these definitions. One of the subtler differences that occasionally manifest
themseles is that while the probability integrates to unity by definition, thalii@od

does not. In fact it might nowven be ntegrable. This means that it can quitegigng to

some ahbses and occasionally tolerates some significant mathematical acrobatics and we
still maintain mathematical consistgnc

Seems that this technique of setting up the formula for the likelihood and maximiz-
ing it allows one to manipulate the mathematical expressions quite. fibelypractical
significance of this freedom is that quite often we get simple amg@nelelosed form
solutions, gen to cmplex problems. Some of these problems wouldehauch more
comple solutions if we used other methods.

Before we sha some e&amples, we should list the advantages of the Maximum
Likelihood method. It is truly essential that the reader is indoctrinated in the solidly
founded theory of the advantages of a statistical method before the reader becomes inti-
mately acquainted with the method and realize that some of theennbaedeemable
vaue. Here we go:

(1) Oftenleads to simple equations without approximations or further compromises.
Of course this depends onwh@ne sets up the problemutbchances are clearly
higher with Maximum Likelihood than mgrother methods (well there are not
that many)

(2) The method often cannot incorporateyaprior knowledge without losing the
above advantage. But in mancases the advantage of a simple, efficient aiadte
solution allavs one to use more data for the same amount of computation and
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thus outweigh the lack of a prior.
(3) Itis asymptotically unbiased.
(4) Ithas asymptotically minimum variance.
(5) Itis asymptotically Gaussian

The first two advantages areague promises, but thaepresent real adwntages
when thg materialize. The rest are well known properties that are very briefly stated in
this modest document, but rest assured that mathematicians, hordes of teenwarked
hard for mag long nights to clad them in stainless steel rigor and obfuscated mathemati-
cal lore in a vain attempt to hide thect that these properties are only warm and fuzzy
Just this and nothing more.

But to be &ir to the method, mgnwell known algorithms hae their roots in (or at
least thg can be preed with) the Maximum Likelihood method. Among them the
Kalman filter the Wiener filter EM Clustering, K-means, etc. And the warm and fuzzy
feeling of some of the properties of Maximum ¢likood kept researchers going in their
cold, dump labs until thyediscovered some great things.

10.1. A Simple Example

We @an demonstrate the abilities of the method witlery wimple example, the one
that most expositions of the method present as a first example.

Assume that we re ygn N vectors x; for i =1..N, we ae told that these;’s are
i.i.d. (independent identically distributed) random variables thatwWall@aussian distri-
bution and our job is to find the meanand cwariance matrixC of this Gaussian distri-
bution. We dready knev the answer of course, so thiseecise will help us build confi-
dence twards the method.

The probability density of a data vectgris
1 _(x=p)"CH(x~p)
Xi ,C =—8€
p(xilu, C) V2]
and since thesg’s are i.i.d. the probability of the whole collection of them is
N
p(X1! Xo, vy XNl/'l’ C) = Ijl p(Xill'l’ C)
1=
and so the likelihood of the parameters is

N
L(,L(, C) = II:! p(Xilu’ C)

Unfortunately typesetting monstrous equations is not the authors forte, so some simplifi-
cations are in ordefhe most obvious, most wersal and most &ctive is to mnimize

the logarithm of the likelihood, the log-likelihood, instead of the straight likelihood. This
way the products turn into sums and taking htives is much simpler So, shall we

start?
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Nl 1

1 - 0
InL(xC)= .Zl g 3 NCI-5In2m=5(x - WTCHx - Mg
and taking the derétive first with respect t
dInL(xC)

- N -1 D_ 0
o = |§1 (X /J)D—

which gives us he very familiar expression
1 N
=— 2 X.
H N |§1 |

We rext take the denvative with respect to the eariance matrixC, but this time we
are hae o do ®me real work
oInL(xC) _Ng1ol(Cl_10(x - CHx- 4D
oC S02 oc 2 aC 0

since we hee ro idea haov to take cerivatives of determinants and uerse matrices with
respect to matrices. If one observes that the determinant is just the sum of all the products
of the elements of the matrices with their corresponding minor matrices and that the
inverse times the matrix is the identity matrix, one is definitely a second millennium fos-
sil. Now-A-Days we google. After we skipver pages referring to similarly named
movies, we get

ancl
oc ©
a(x — u) CH(x; - § y
OAZ )2 ) - g - €

and thus

onL(xC) 130 4 4, _ AT~
T_EEDC +C (% — (% — ) C g 9

and after pre and post multiplying with mat@xwe get the equally familiar
C=3 2 =X =)
i=1

Anybody good with statistics knows that this is a biased estimate of\haeara@e which
proves by xkample that Maximum Likelihood does notvals produce an unbiased esti-
mate. In fact it rarely does in practicatlthen unbiasedness is such a futile thing to
attempt.

Some observations are worth mentioningvniérst of all this is one of the fecases
where the normalizing factor of a Gaussian plays a role in some computation or
derivation. Most often, but not alays, we can just ignore it. Second, it seems that this
example is rather unusual in anotheaywW\e rarely care about parameters of probability
distributions, what we prefer to estimate is motions, shapes etc, what real paople w
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This is not strictly true! Most of the times what we estimate is a quantity directly related
to the mean of some distribution and occasionally to its variance.

Although computing the ea@riance matrix does not seem mucbrky we might get
more accurate results if someoravgus the alues of a f@ components of this matrix. It
is not unusual in practice to knceither the values of a Wecomponents, kn@ that this
matrix has a special form orvepeferred ranges of values for some particular compo-
nents. So let us assume that a fairy told us that théiagjonal component[k,|] = a
and what we hae row is a onstrained minimization. ¥add the terms

M(CLK, 11 = a)A,(CI[l, K] — a)

to the log-likelihood in classic Lagrangian fashion and thewdguie with respect to the
covariance becomes
olnL(y, C)

3C Z Sctic X = )%~ ) CTH+ A8 + /‘zékélT =

for which no combination of pre and post multiplications is going ve g6 a smple
closed form solution. So, the moral of the story is: Do not\mlrefairies.

10.2. A Not-that-simple Example

Ready for a deep ater test? Great, let us all grab an anchor and jump indtex!w
We ae going to compute the maximumédikhood estimate of the depth of a pointegi
its correspondence in tWframes and the rotation and translation between the frames.

Let the position of our point in the camera coordinate system atNime be Xy
and at timeN be Xy . The corresponding projections on the image plane will be

Xn=
XN+ = K ATNl

Z Xna

X
XN=K ATN

XN

whereK is a2 x 3 calibration camera that takes care of the scaling and shifting that is
involved in the projection. Furthdet Ry andTy be the known motion parameters, rota-
tion matrix and translation vectaf the object that contains our point so that

XN = RXN_J_ +T.

We dl know that we can project a 3-D point to the image plamene cannot project an
image point back to the 3-D world without some additional information namely the depth
(or the Z component) of the point. Since it is slightly moreveoient we will use the
inverse depth butwerything could be done almost as well with straight depths. The
inverse depth at timé&l -1 is

ZN—l = AT
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and this is our unknown. 8o rot know the depth at tim&l either lut we do not care to
recover it and so do not bother with it at all. &\re given the image position of the point
at time N —1 hut its corresponding point at timé is only knavn with some ariance
*Cn. This means that the image poiqf has a probability density

1 (=) T*CR (X )
———-—_°¢© 2
V2r)AC|

This probability density is our likelihood, and true to the ideals of statistics, we minimize
its logarithm instead of the likelihood itself. This logdihood is, after omitting all the
constants that do not interfere with the minimization

—(Xn X,UN)T XCI_\ll(XN =% un) (10.1)

a true least squares expression. Alas, thouga!de/rot know this * . The secret here
is: Do Not Ranic. This* iy is the mean of the distribution and if we e depth, since
we are gien everything else that is reV@nt, we could find where the point is in 3-D and
project it to the camera at timé. This projection is the mean of the distribution. ket’
compute it then.

The inverse depth and image point at tifle—1 dong with the camera calibration
matrix

P(XNIdN-) =

: 1
N-1 = AT
XN—l
xN—l
XN-1 — K T
XN—l

can easily gie ws the 3-D vector of the point with respect to the coordinate system. There
are half a dozen ays to write the expression, so we roll a dice (whiclvemently has
half a dozen facets) and write

where

and by using the rigidity equation we write
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¢N-1
To avoid typesetting and keep the math legible we rewrite it as
_ VitV

St {NaS

where \ectorsV; andV, and scalars; ands, correspond to their bulkier counterparts
above. Going back to Eq. (10.1) we ¥t minimize

0 _VitdinaVe d xc2 Vi +{NaV2 [
g™ S +dnaS U NN S +dnaS U
which we do by taking derdtives
0 0 Vi+{naVe d xc2d, Vi+dnaVaO_
aZN—ld(N S+ dnaS U N S +dnaS U
Vo(s1 +dnaS) — (Vi +InaVa)Se g Vi+dnaVaO_
; CRaN =~ o 2 =0
(s +dN1S2) S +{N1S U
and that after seeral obvious simplifications we get
_ (V251 - Vi)' *CRi(siXn = Vi)
(V25 = Vi8)T *C(S2Xn-1 — V2)

and we can plug back the definitions factorsV; andV, and scalars; ands, and
squeeze a tinbit of extra simplifications.

X,UN

-2

¢N-1

Now the question inverybody’s mind is whether we can introduce a prior of/an
kind to the minimization without an exorbitant penalifite answer is no,ub most often
we do not hae a doice for motion problems. 8Wkespairfully need ankind of informa-
tion to male it work, and beggars are not choosers.

Ch. 3. Sec. 10. Maximum Likelihood Estimation 53



Spetsakis Computer Vision

10.3. Applying Maximum Likelihood

We have seen tw examples of application of Maximum Likelihood and both are
kind of different. Hav is Maximum Likelihood applied in practice? Is there a common
pattern? It turns out that thast majority of the applications of this technique fall into the
style of the last example alm We havea st of parameterg that we vant to estimate
and our model connects them to the mean of some measuretmefss, X, -+, Xy} -
Almost alvays, the underlying probability distribution is either a gaussian ariant of
it and maximizing the likelihood is eqaent to minimizing

INL(6) = (x - u6))' C™(x~ 1(8))

where the ceariance matrixC is assumed known and constant (independef).of his
looks like a kast squares problem and unlg&®) is linear it is a ron-linear least squares
problem. Taking devetives we ddtain the normal equations

-0InL(6) = (Ou(6)) C™(x - u(6)) =O.

This all sounds very simple, butwaloes one do it? Well, all the “computer vision” of

the process is hidden inside the functpdd). The parameterectoréd could contain the
motion parameters, the depth (as\amr a prametric form of the motion or depth.
Vector 6 could also contain the set of parameters that define an object in a recognition
problem (e.g. gien that the object in front of the camera is an orthogonal prism, what is
its orientation in space or its proportions), eeresome intermediate result of some esti-
mation that does not @ a & immediate utility of its own.

Sometimes, though, we are not so pekd end up with models thatVeloth the
mean and o@riance matrix dependent @h In such unfortunate cases one can attempt a
fine act of desperation and mount a heroic frontal attack by differentiating thedbg lik
hood

_dInL(e) _ou®)"
6. 06,

_ 1 4 0C[O
CH(x - uo +—t%1—+

(X=p(@)+5tr 36 1
oc

- CH(x - (6)

1 -
5 (X= uey'ct 56

where we do notven dare tale the dervatives with respect to &ctorg and instead settled
for a dervative with respect to an elemegtof 6.

10.4. Multiple Sources of Information

Whenerer we havetwo independent measurementsand y we tend to write the
likelihood as

L(6) = p(x, y16) = p(x|6) p(y|6)

without blinking. This is essentially playing with the assumptions a bx.ahdy were
independent, then nocome the both depend o&8? What we really mean here is that the
measurementg andy are both related té but any randomness ix is independent of

54 Ch. 3. Sec. 10. Maximum Likelihood Estimation



Computer Vision Spetsakis

ary randomness iry. Someone had thexeellent idea to call such a thirgpnditional
independenceéAnd two random variables are conditionally independeng dh

p(x, y16) = p(x|6) p(y|6)

which is &actly what we need. This assumption is routinely used to handle “indepen-
dent” measurements andveeal other things, but it is notvabys a reasonable (i.e. not
very accurate) or produete (.e. might lead to a more comglelgorithm, or &en worse,

to a preexisting one) assumption.

One further reason tove this log in front of the likelihood is that the log-dik-
hoods from diferent sources are ada®i Writing the log-likelihood with explicit refer
ence to the source data

InL(8]x,y) =In p(x,y|d) =In p(x]|6) + In p(y|6) = In L(E|x) + In L(8]y).
an observation that will sa ws trouble later.

10.5. Variance of the Estimate

No estimate is good unless you lsnbow much you can trust it. And this is not just
curiosity Unless we kna the variance we cannot combine information froro tiffer-
ent sourcesven if everything is gaussian. So viag a measure of our confidence is not a
luxury, it is a recessityAnd as alays the most common and a@nient measure of con-
fidence is the variance for unidimensional estimates and tfagiaace matrix for multi-
dimensional ones.

We would really want a simple and generaymo compute the eariance matrix
and here the record is mixed. There is no such genasakmown either to humans or to
mathematicians and, to nmakhings worse, it is not easy to come up withere ad hoc
solutions to specific problems. On the other hand, there is a very descent approximation
to the coariance, one that is rather unlikely to embarrasgady It invaves theFisher
Information Matrix a concept normally understood only by the initiates to the rites and
rituals of Statistics of the most inner circle. The astonishing importance of this matrix lies
in exactly three facts:

(1) Itis named after Fishethe most important mathematician of the twentieth cen-
tury.

(2) Sounddike the thingy also called information which wasrdeped by Shannon,
the most important mathematician of the twentieth century

(3) Itis defined in a rather crypticay, to make it opaque to the minds of gnody
who is not the most important mathematician of the twentieth century.

And since the reader of this modestttkeas lost their chance to become the most impor
tant mathematician of the twentieth century (unlesyg tne already) we a going to use
slightly less cryptic language to present this quite useful, and in fact rather simple, con-
cept. If the reader hasyadoubt about the simplicity of this concept, yrshould compare

the date of birth of Fisher and the date of the first publication of his ideas. He was almost
a kid really and kids hze a aiste for simple things, lkpotato chips and milkshakes.
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While there is no theorem or anything that tells us that the approximation using the
Fisher information matrix is within some bounds (and usually these theorems come with
SO may stipulations, preisions, catches and fine print that redkem useless), we Y&
good reason to hope that it is good because it is exact iy siaations. It is exact when
the underlying distribution isagissian and certain critical functions linaais exact at
the limit (infinite amount of data), is the lower bound if the estimator is unbiased. But
most important it is very intuite, works quite well in practice and there are too &ter-
natves (So we are stuck).

The first relgant result is theGaussianity of the Lédihood It is possible to she
that the lilelihood L (8) looks like a £aled gaussian if we use nyamary iid data. This is
an almost direct consequence of @ental Limit Theoem but it is easy to recount the
basic steps of the proof withoutvisking the Central Limit Theorem. Létbe the alue
of the unknown parameters that maximizes the likelihood, in other words the maximum
likelihood estimate, which makes the daive equal to zero. If we do a second order
approximation (first order approximation reduces to a constant near a maximum) to the
likelihood

INL(6) = 3 In p(x6) =
i=1
%In p(x16) + iz%;m p(X.IB)D ©-d

—(e e)Tzrln p(xle)m (e 6)

and since the first demtive & the maximizing poing = 6 is zero
2

InL(6) = ZIn p(xild) + = (6 e)Tz In p(x|6 = 8)(6 - §)

i1 00067
and setting
N
| = 2 30067 In p(x|6 = 6)
the log-likelihood becomes
(6-6)T1(6-6)

L() =const e 2

and it certainly looks lik a saled gaussian with meahand \ariancel . So we fave
proved that near the maximum &tthe likelihood looks lile a qaussian. The result can be
extended and pre that for sufficiently large number of daltg the likelihood looks lik

a gaussian eerywhere. This is where the various preconditions of the formal definition of
the theorem come into play to ensure that fofigahtly large number of datd, there is

a gngle maximum, that the maximum grows sharpeNascreases, etc.
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Let us see n@ what happens wheN grows big. From the ha of the large numbers
we knaw that if we aerage a large number of things we get the expected value, some-
thing obvious to eerybody except the brightest mathematicians, who had ieprdSo

2

O . d
I—Ilml—llmI—NE In p(x|@ =8
N, = d0a6" P(] )E

or, using the latest fashion in notation

o_ - O
I =N Ex00" In L(61X)O
O O

andl is the BimousFisher Information MatrixIf we consider the liklihood of all data,
not just a single vectot then we write as

[ o o . 0
| = Ex00" InL(6K %1 ---xnyH0O= E0O" In L(6X) O
0 O O 0

Up to this point we showed that at the limit the likelihood is a scaledsign irg.
We @n go on and shwthat our estimaté which is a random variable since it is a func-
tion of our (randomly corrupted) data, follows a normal distidm. It is easy to do it in
the Bayesianistalshion, all we hae o do is a Bayesian leap of faith. It is a bit harder to
do it in the Frequentistabhion and their muscle snapping rigart every bit as enjg-
able. Knowing betterwe gay out of the crossfire of theseawnost lustrous \arring
tribes and pree rothing.

So we hge kind of shaved that when we lva lots of data the variance of our esti-
mate is the iverse of the Fisher Information Matrix. Not only this, it follows augsian
distribution too. But before we go on to pea ouple more theoretical resultgyseding
the same subject we want to studyw peactical aspects of this matrix. The first thing to
shaw is that this matrix has tevequivalent definitions. Let us find the second form by
starting with the first

| = E%—DDT In L(Hlx)D— - S]DT In L(6|X)EP(X|9)dx =

S]DT In L(9|x)§,(6'|x)dx . J’DEDLL((;) gr(e)dx -

after dropping the dependence of theeliixood on the &ctorx to sare keystrokes and
continue

@L@E)@OL@)’
L%(6)

_ O0a7L(8)
ID L(6)

We rotice that the first term is the integral

L(6’)d - j L(6)dx. (10.2)
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J’ gjmTL(e)gjx = DDT% L(e)dxg: 00™1=0
and so the Fisher information can be written as

. [IL(e) miLe) d
_IDL(G) ML(e) O

U U
L(6)dx = E[S5(6)ST(8)[]
U U
where §(6) is the gradient of the log-ldihood and is called th&core Impressrel Very
impressve. But does it hee any se?

Computing the Fisher information, one realizes a common numerical problem.
While the Fisher information is the second daiive & the maximum and it is guaran-
teed to be posite definite in theoryit is not so alvays in practice for various reasons.
We might have ot maximized the liglihood yet, either because we do not want astey
the computational resources if wevhdound a good enough estimate or because we use
an algorithm that requires the Fisher information to perform the maximizatemigkt
even havemaximized it, but plain old round foérror prevents us from obtaining a posi-
tive definite matrix. Nav look at Eq. (10.2). No matter the value ), this matrix is
definitely non-ngative cefinite and very probably posié definite.

There are tw more reasons whthis alternate form is useful. One is that half the
related theorems kia the one form as starting point and the other half the other form.
And second, very often there is no better way é¢dfy an analytical devetion of the
Fisher information than do it using a different formula.

Since we touched the topic of numerical computation, we might talk a bit more
about it. So les focus on the numerical maximization of the log-likelihood. Thelikik
hood, being no different thanyaother function is maximized by finding the parameters
6 that male the score (devitive o |og-likelihood) zero

S(9)=0

which very often is a non linear equation and practically all non linear equations are
solved with an iteratie procedure. W dart with a good gues&, and then find succes-
sively a 6;, 6,, etc until we (hopefully) coverge o 6. The most generic way to get these
successie gproximations is theNewton-Raphsomethod where we approximate the
score with first order Taylor series

S(6) = (8)) +0S(8;)(6 - 6)) =0
which leads to the well known update rule
D—l
6= 6, - 11(6) ) S(6) (10.3)
that works really well if we are really close to the solution. If we are not so close to the
solution bad things can happenrelikie -[1S(6;), known as thé®bserved Informationot

being positre definite. Such a lack of definiteness spells double-trouble. Not only is it
hard to iwert such matrices, the solution we get can wondesrids saddle points or
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minima. No need to despaiiMe caan remember that the same problem appearedeabo
when we computed the Fisher informationvéai the uncany similarity between the
names and definitions of the Fisher and observed information wevfall@milar
deriation and get

0S(6;) =007 In p(x|g;) =
N

> 00" In p(xi|g;) =

=

O 007 p(xile;) B 0
leg— %(D In p(xlg)(E I p(xile;)” o

where the first term approximates the expected value
o™ p(xi|¢9j)D: N oo’ p(xi|9j)D:
o P(ile) 0 P(ilg) o
CO07 p(x|e;) B:
0 pP(x|6;) 0

This looks mostly harmlesaubit is not. Things that va eypected value equal to zero,
tend to dance around zero so that thefage” is zero. But when we compute it biea
aging a finite number of samples, this quantity is pasibout as may times as it is
negaive. Now it can just happen that it has the wrong sign argklanagnitude at a most
unfortunate moment (e.g. during a demo), with catastrophic results. But then if we kno
that it has zero mean, wlon earth are we computing it? So wedet about it and com-
pute the second term only which unsurprisingly enough it corresponds to the akernati
form of the Fisher information.

Replacing the computed value of this summation with its expected vatuks w
very well in practice and it is an irgeal part of Le&enbeg--Marquardt, a well known and
very effective dgorithm. If we hae a heory what do we need the data. Recognizing a
beautiful thing when we see it we carry this idea further.

Mark Twain is credited with one of thexeeemely fev quotes about science that dis-
play some deeper understanding about the subject:

There is something fascinating about science. One gets such wholesale returns of conjec-
ture out of such a trifling restment of fact.

which brings us to the scoring method. Since what we needéx in the vanilla Nev-
ton-Raphson is the observed informationwhabout if we use the Fisher (okmected)
information. It turns out that this is a pretty good idea and hasanting property: it
does not need grdata! No pesk facts harassing our beautiful theories!

There is of course some exaggeration in thev@lmtement since the process can-
not be totaly data free. There areotplaces where the data is hidden. One is inside the
score §(6;) in Eq. (10.3), which we cannot replace with its expected value since it is
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identically zero, and the other in the guésstself. Sinceg; is close to the maximizing
value of g, it represents a distilation of the data (or at least approximates it).
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Time for a couple ofxamples. First we can try to compute the variance of the esti-
mated mean of a gaussian digitibn. In a previous example we dexd the log-likeli-
hood of this as

NOl
502
whereC, is the cwariance of the data, so that we distinguish it from thearcance of

the estimate which we nan@,. The score, that is the degtive with respect to the mean
u, we computed as

- 0
InL(u) = INICyl - |n 2= 3 (X. A CHxi — Mg

ain L(,u)

S = =3 504 - )]

There are tw ways to compute the Fisher information and we will try them both to see if
we get what we think we should get withyanf them.

The first attempt will be using the second dative d the likelihood oy equiv-
alently, the first dewative d the score

0 0
|—ED¥D‘ EDZCX 0=NC¢
0% g ga g

where we did notven need to tak the expected value since the data had alreeafyoe
rated by the time we were done with the secondraere. So he cwariance of the esti-

mate is
1
— 11—
C,=1l =N &

which is what we expected it to beeWan try nav the other version where

O ﬂD
— O TD_ -1 -1 |
| = EES(/J)S(/J) 0= E% x (Xi = 1) DZC (x;—woo=

U 0d
[ [
[
EDZ Z(C_l(X. WNCH(X; = ﬂ))TD cy ZlZ EE(X. H)(Xj = )TEC?
i=1j=1

and sincgx; — u) and (x; — u) are independent for# j, and thus the expected value of
their product is the product of their expected values which are both zero

N [ U
| =C Zl Ef(x — 1)(x — )" [Cx =N C'C,Cl =N C
i= N

exactly as before. W derived the cwariance in tvo dfferent ways and we got what we
expected both times. So we must be doing something right.
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The next example will be optical flo We will derive the Lucas and Kanade algo-
rithm using a Maximum Liglihood approach and find the variance as well. The assump-
tion is that the intensityy[ x] of a pixel x in frameN stays the same as the camera or the
objects in the scene w® and what was projected at gixx in frame N is projected at
point x + uin frameN +1, modulo the noisa[x], which in math lingo is plainly

IN[X] = Inaa[ X + U] = n[X]

and to mak life easierthe image is 1-DWe havea arfeit of assumptions here and we
state the most important. The intensity is constant, the so daflage nstancy
Assumptionand the noise is assumed independent, zero mean, gaussiaranatices
equal too2. We dso assume thatis small enough to makfirst order Taylor approxima-
tion reasonable. And since we are going to use Lucas and Kanadeene &sume that
the flov u does not &ry much in the neighborhood &f The noise model then for a sin-
gle pixel is
_Md
L(u) = p(n[x] |u) = const e 29f =
_(INDX=T gl U
const e 207

and we can multiply the noise models for all the pixels in one small patch to geethe lik
lihood for this patch. Knowing better than that, we work with the log-likelihood

In L(u) = _i:_zs 3(| N[X +i] —Iz,j;;l[xﬂ +U])2

omitting the constants that will not sweithe differentiation. If we tak derivatives right
away we et

90 Lw= S InsxI X+ + Ul DX +i] = Ty X+ + )
ou i=3.3 o2

which is a non-linear equation sintgy[x +1i + u] and its dewative ae not linear func-

tions of u. We @n use the standard Newton-Raphson approach aedtteksecond
derwvative and then omit the second deaiives that appeaiVe got for a more direct and
much simpler approach, where we approximate the image by a linear function and then
take the dervative. This results in the same mathematical expression in the end but elimi-
nates the need for arguing about the omission of the secondidesi

3 (INDX +i] = Tl X+ 1] = Inag [ X +i]U)°
i=-3.3 203

InL(u) =-

from which the detiative (or score) becomes

LR Ier ) (Y Sl Bl PP el Bl PP LS )
ou i=—3.3 o2
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and after setting

Exx: Z Iﬁ+l,X[X+i]

Ex = i:_ZS 5 N X TI(T X+ = Tn[Xx+i])

we get
EXt + EXXu _
of

S(u) = -

that looks equwialent to the well known Lucas and Kanade equation. But we should not
forget our original target, to compute the variance:

__a _EXX

10.6. Minimum Variance

Variance is an important measure of the quality of an estimator but by itself is not
enough. One can design an estimator that has zero variance easily: the estimator defined
asd =3 or any ather constant of your preference. You cannot beat that! But it will be a
useless estimatonevetheless. On the other hand one can define other quality measures
for estimators, lik the mean square errdaut this is less carenient to use and in most
interesting situations it does not provide us with more usefull information thamatire v
ance. So we use the variance.

But before we imest our precious time in it we & to make aure that ay lower
bounds, upper bounds or whasebounds are not fooled by estimators as silly as the con-
stant. So we first establish the conceptiatas the following difference

B(6) = E{8} -6

whereé is our estimatgri.e. a function of our data and nothing else, ansithe ground
truth of the estimated quantitfotice thatB is a function o only, and does not depend
on the value of or the data. Clearly we prefer estimators whose bias is zero, that is unbi-
ased, if for no other reason because bias is a bad thing. Unfortutigtelyary other
things in life we hae b sttle for less. Most often it is very hard teee measure bias, let
alone find an estimator that is unbiased. And almost equally ofeepbedy is happ
using an estimator that is weisally proclaimed biased, so there is little point bothering.
A less stringent requirement is for the estimator tadyenptotically unbiaseavhich it is
iff

lim E{6} =6

[\ )
whereN is the number of data weve This is a far less peerfull requirement and gn
estimator that does not satisfy it is almost useless. @nyeclosely related concept is that

of consistencyAn estimator isconsisteniff the estimator corerges to the ground truth.
We @n distinguish betweestrongly consistenand weakly consistentlepending on

Ch. 3. Sec. 10. Maximum Likelihood Estimation 63



Spetsakis Computer Vision

whether the corergence isin probability or almost sue. The understanding of the subtle
difference between estimators that asymptotically unbiasedstrongly consistenor
weakly consistens what maks mathematicians so attraetio the opposite sex, and as
such is beyond the scope of this modest text.

We havealready seen that maximum likelihood can produce biased estima®rs. W
proved it by example, since need only one biased estimator to establish that there is at
least one. There are other theorems that indicate that maximum likelihood is in the habit
of producing biased estimators. And in practice it does it all the time. If antswles-
perately to rationalize on whone can argue that maximumédikhood tends to produce
parameter estimators that are associated with smaller variances so that the likelihood is
increased just a bit more. Andvgn that the poster child of estimators is addicted to bias,
statisticians engineers and whkieeelse makes a living out of statisticsviealearned to
live with biased estimators as long as the error is small.

Going back to mean square error
MSE@) = E{(8 - 6)%}

is closely linked to the variance because
N . R R O
MSE() = E{(8- 6%} = E% ~e(8) 2 iy -0

and taking into account tha 6} - 6 = B(6) is mot a random variable and that the mean
of & — E{6} is zero we get
5 5 ﬁD 2 A 2
MSHE®) = E[1? - E{H}DD+ B<(9) = var{ 8} + B(6)
U

and this means that if we already inthe bias of an estimator the mean square error
gives no alditional information.

It should be obious that one cannot meaningfully talk about the variance ypf an
estimatoy because manthings fit the definition of an estimator andytlaee not mean-
ingful, like the constant estimator for example. So to entk discussion meaningful we
restrict ourselves to meaningful estimators. But despite the scarcity of unbiasedness, the
discussion on minimumaviance centers around unbiased estimators, rather than asymp-
totically unbiased or consistent ones, mainly becauseniee fellows, Harald Cramér
and Calyampudi Radhakrishna Rao, presented us witiCtimmerRao Lower Bound
that in its simplest form deals only with unbiazed estimators.

What is quite a pleasant surprise is that the Cramer RaerLiBound applies to a
wide \ariety of estimators and is by no means tied to the the maximum likelihood estima-
tor, despite that manof the concepts we talked about in the cehtd maximum lileli-
hood are employed in the proof and dation of this bound, most notably the Fisher
information matrix. Not only that, the simpleergion of the bound rarely applies to the
shamelessly biased maximum likelihood.
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10.7. Cramer Rao Lower Bound

Theorem. The cwariance of an estimatad whose expected value g, and its Fisher
information matrix id(8) satifies the following inequality

Var{8} - (Ous(6))'17(6)Dus(6) 2 0

where> 0 means simply posite cefinite

Obviously if the estimator is unbiased thgp =6 andu; =1 the identity matrix
and the inequality gets its more popular form

Var{8} -1%6) =0
Before we proe the theorem we considerdvemmas that will come really handy.
Lemma 1. The expected value &) is

E{S(6)} =0
Proof: Just apply the rules
E{S(0)} = J’ S(6) p(x|6)dx = J’ Oln L(B)L(6)dx = I

[OL@dx =D [ L(e)dx =1 =0

OL(6)

W L(B)dX =

QED. I wish all proofs were l&this.
Lemma 2. If the following compound matrix

BA . C B
is positve cefinite, then
K=A-CB'C’

is also positie cefinite.

Proof: The proof for this is pure mechanics. The interested reader can eagfyythat
the inverse of matrixM is

0o (A-cBichH? . —(A-cBic)?cBlno
mMt=U . - - U
O -1~T —1~Ty\-1 T A-1-~\1 O
BiCcT(A-cBiCT)t . (B-CTAlC)? [

and since the irerse of a positie cefinite matrix is also posite definite thenM ™ is pos-
itive cefinite. This implies thak® = (A-CB™C")? is positve and consequentlK is
too. QED.

Proof of Theorem: It is easy to pree the theorem ne. We form the compound random
vector
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v 50
i

OoOogd

and compute its e@riance
Coq{V} = E{(V - E{V)(V-E{V})T} =
BE{( S(6) - E{ S(O)1(S(6) - E{ S(Tﬁ)})T} E{(S(6) - E{ S(fz)})(é _T,Ué)T} B
0 E{(6-ua)(S(6) - E{S(6)}) '} E{(6-wa)6-1g)'}
and sinceE{ S(8)} =0

DE{S(é')S(é')T} E{S(6)6'}0_0 1(6) E{S(6)8"} U
. J E{as(6)") var{8} g [E{6S(9)'} Var{d} [

and we nw only need to compute the expected value of the produsigdfand 6
E{S(6)8")
which can be manipulated to death as follows

E{S(6)8"} = I(D InL(6))8" p(x|e)dx = J'(D In p(x|6))8" p(x|6)dx =

Op(x[6) 5T
I p(x|6)

J’D p(x|6)8" dx =0 f p(x|6)8" dx = Oy

Co{V} =

p(x|@)dx =

from where a simple application of the second lemma brings us to the desired result.
QED.

This is one of the most celebrated theorems in statistics and \@nedrdy both
applied and theoretical statisticians. The former becaugehtipe to apply it some day
somevhere, the latter because yHenow it cannot be applied. Nertheless, it gies us a
nice warm feeling and some reassurance when we usewseirof the information
matrix as an estimate of thevaoiance matrix.
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11. Hypothesis Testing

It loves me; It loves me rot. This is the question that isnalys in the back of the
mind of every cat avner You might be surprised to learn that similar dilemmas plague
computer vision. Sometimes the question is asked explicitly and djramtig times it is
just implied. Does this pixel belong to this nicely movingrsent, or not? Is this pek
part of this independently moving object or not? Are we still tracking the right tHexg?
this pixel visible in the next frame? Is this the picture of Aunt Rhodiest about an
guestion that can be answered with a “Yes” or “No” will be our concern in the section.

Statisticians h&e invented a very strict methodology to answer this type of ques-
tions in a very rigorous manner callelypothesis dsting Using this methodology the
answer would be a “Yes” or “No” accompanied by a margin of errorvet ¢& signifi-
cance. Which is really good news. The bad news is that before we get an answes we ha
to provide a statistical model for the problem. Building models can be hard work and can
involve tricky and hard to analyze approximations or assumptiausthis is the price to
pay.

And this price can be steeper for problems that are meeks lef abstraction aay
from the fundamental physics of the problem. As a result these statistical methodologies
can be applied mainly towolevd vision problems where mathematical models are more
directly applicable and ka been traditionally more coopenati There are exceptions of
course lile face recognition where a seemingly highelevision problem is sokd
respectably with v levd vision techniques li&k RCA and jets.

11.1. TheMechanics of Hypothesis Testing

But before we start thinking about integrals andvotutions we should understand
what hypothesis testing is abotfirst of all, the yes-no dilemma is not symmetric, we do
not have the same criteria for the yes and the no sides. Pretty mech jikige in a court
that does not pronounce the defendant guilty or not guilty with symmegrioants, bt
requires a very high Vel of confidence for the guiltyerdict, we hae thenull hypothesis
and thealternative hypothesisvhich are treated differently.

The null hypothesisH,, for short, is called “null” to uphold the stereotype of statis-
tics as a difficult subject by confusing thewesemers. But, due to a fortunate congruence
of events, it also provides a common name for this typeypbtheses, gen that in dif-
ferent contexts these hypotheses shoule tdfferent names: default, status quo, safe,
not guilty, disprovable etc. And as this long parade of names indicates, the ypdttre-
sis is the status quo, the hypothesis that we do not need or we canveottsdhe one
that has to be dispved before we accept the alternagihypothesis and has to be dis-
proved beyond reasonable doubt. Even if the altenreatiypothesis looks bettewe have
to rule out chance since we can not upset status quo witkiveinely high confidence
level.

The alternatie hypothesisHy, is the guilty favaite or novel hypothesis. W do rot
accept it lightheartedly and we accept it only if Hhgis truly condemned by the data, if
the plausibility ofH, has slipped beile some level and this level is normally very avor-
able tavards H,. In most situations where the hypothesis testing is applied the
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experimenter wants the alternagihypothesisH,; to be accepted since this is awtbeory
and most likely the»g@erimenters owvn. Given the well documented weaknesses of the
human nature, it is wise to set the confidence bar really high. While in nmos¢ud
vision problems, there is navaurite hypothesis, and there is no humaniagt whose
instincts we are fighting, thid, is just the one weandisprove and the reason that we set
the bar very high against; is to guard against approximate models.

The most common scenario for the applicationygfdthesis testing is for thevau-
ation of nev medicines. Suppose that for a certain disease the standard medication occa-
sionally causes death from bleeding and & nedicine appears that claims to treat the
disease without messy death@ fEst it the deelopers of the medication treat 100
patients with the e medicine, the tayet group, and 100 patients with the old medica-
tion, the control group. The nulypothesis is that the old medicine works at least as well.
The alternatie hypothesis is that the mwemedicine works betteiThey run the &periment
for 10 years and in the end theount 3 deaths from bleeding in the control group, as
expected, but no deaths from bleeding in theydargroup that was taking thewe
medicine. Can we infer that themenedicine is working? Can this happen by chance? It
turns out that these results could be obtainen & the nev medicine was identical in
behaior to the old one with 5.9% chance or to put it in more concrete terms, if we
repeated the same experiment 100 times we would get resultsavbatbfe about 6
times. So, is the 5.9% chance too high? It is matter of ethics, economics and history (or
self-righteousness, greed and sloth). The answer to this particular question is of no
importance here, but we will encounter similar questions in vision, and the choice of the
cutoff there depends more on plain old practicality and less on cardinal virtea®otik

Enough with philosoph let's do ®me work. Assume that we\etwvo pixels from
two different images and we want to see ifythee projections of the same 3-D pointeW
know from instinct that we cannot\g a cfinite answer with just one pixel but we try
our best. W haveto follow a few dear steps that are common to practically all such
problems.

(1) Specifythe Hy and H;, based on the nature of the problem and the statistical
models gailable.

(2) Definea gatistic’ on the randomariablesQ(l4, I,), wherel; andl, are the inten-
sities of the tw pixels. The statistic should be easy to compute numerically and
satisfy our instincts about the problem.

(3) Derwve p(Q(ly, I5)|H) the probability density o€ given the null typothesis. It
helps if you hae a ggod model and a statistic for which you can compute proba-
bility distributions.

(4) Decideon a significance &l p, and define a range(or a set of ranges) f@p
such thatQ is outside this range with probability equal to the significanee le
p;. The range is calledconfidence intervak.g. if Q is within this range we va

8 A statistic is just a function of the randorariables. Thegrage of the random variables and the sum of squarkdiatites
of pairs of random variables aredwommon statistics.
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confidence inH,. The significance lel is typically 5%, 1%, 0.1% or there-
abouts. IfQ is outsider then the evidence agairtsf, is significant.

After we set up all this statistical infrastructure we flesh out the actual algorithm. The
algorithm is astonishingly simple.

(1) Computehe statisticQ(l4, I,).
(2) Determinaf Q is within the range.

(3) If it is within the range accept the null hypothesis. If not, accept the alernati
hypothesis.

Other than the first step, the computatiorQofthe rest of the steps are computationally
trivial. A really simple procedure.

Now that we knav what to do, we hae © do it. For the first step we ha exactly
two choices. Either

. Hg is that the pixels are the same agdis that the pixels are different.
or
. Hg is that the pixels are different ail is that the pixels are the same.

We might be tempted to defind, as “pixels are different” but a couple of steps down the
road we hae o derive the probability ofQ given the null hypothesis which is far from
easy in this case since there is little help in the literature and it is very hard witbeut o
simplifying assumptions. So we opt for the other definition thats “pixels are the
same”. But we ha © daborate a bit on that and define “pixels are the same” iaya w
even a mathematician can understandeWhow from intuition and our experience as
computer vision practitioners that if thedwixels are projections of the same thing, their
intensities (or colors) will be the same modulo some noigeddop a model for this
noise and then the null hypothesis is defined as “tHeréifce in the intensities of the
two pixels is just noise that follows our noise model”.

The second step is to define a statistic, which we want to be easy to compute and
easy to find its probability densitifor our purposes, this has to do with some kind of
weighted sum of squared ftifences. Here we deal with one of the simplest forms of the
problem where we & just one squared difference.\lgheless we weight this squared
difference just to keepverything on the same footing. So

2
Qly, 1) = 712"
0,

n

whereo? is the variance of the noise.

The next step is to get the probability distribution of the stati3tiso we &amine
the abee formula carefully Given that the tvo pixels are projections of the same 3-D
point, the quantity
AI _ Il - |2
On - On
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is the noise, so it has zero mean. It is also scaledl,[®p it has unit variance and as a
result the mean @@

EE(AI)ZB
0 2
E(Q) = Eé?g—'gm: 0, 0%
n D Un Un

If the noise is Gaussian then we alsowrbat Q follows the x? (a.k.a. asChi Squae)
distribution with one degree of freedom that has probability derfsi@Q;1), where the
second argument indicates the degrees of freedomnslgct a confidence Ve, say
0.5%, open the probability tables and find the confidence aitdfvthe noise is not
Gaussian we ha  decrease the confidencedbto say 0.05% and run avieextra tests.
So with confidence &l 0.5% the tables ge us 7.9. This means that if the weighted
squared difference is greater than 7.9 we reject the ypdithesis and infer that the pix-
els are different. If it is less we concede the nyfidihesis and infer that the pixels are
equal.

There are a {# observations to be made on this really simple test.

(1) We reed the ariance of the noise. It is not that hard to estimate especiédly of
line and can be done. The standard todM&ximum Lilelihood but other tools
like theMethod of the Momentgan be used as wellibthe choice of good meth-
ods is rather limited. More complesituations require of course haar invest-
ment for model building.

(2) We do rot need a model for the alternagtihypothesis, although it is really the
hypothesis on which we are working.

(3) Thejustification behind the selection of the confidence interval is basgelyiar
on the intuition rgarding the alternatie hypothesis. Had the altermagi hypothe-
sis been that we ke ovefitted the model (i.e. fitted a model with too man
parameters on tooveindependent data) the interval would/édeen something
like[0---0. @].

(4) Byexamining just one pixel we cannot get the discriminationgyonve need for
most applications. ¥Wan use more pels but then we need a more sophisticated
model and it is a bit harder to get a good set of parameters for this model.

(5) This statistic looks very much l&least squaresub then most of the statistics
used in vision are similar to a weighted sum of squarddreifces. Thelesign
of statistics for our kind of problems, is the port of entry for ingenuity and the
chance to shoot your foot or your palate.

Hypothesis testing is axeellent tool for deciding for or against a hypothesis, a tool
that requires minimum v@stment in assumptions, models etc.

§ It is the Method of the Moments, not the Method of the Moment, so it has nothing to do with the soup of the day.
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11.2. Bayesian Ratios

Hypothesis Testing though is not the onnte in town. There are other tools, most
notable being the ones that are related to the Bayesian forhmila.explore then one of
the alternaties for doing more or less the same thing.

We havetwo distinct hypotheses, namely eithidy, that the piels are projections of
the same point in space, by that the pixels are projections of the different points in
space. W will use the same statistic and try tea@ate the relatie merit of the tvwo
hypotheses. The discerning reader musthdready noticed a difference. &\éb not dis-
criminate againshi;.

In the H, hypothesis things are as before and wevkttte probability density of
is p(Q|H,) = f,2(Q;1). In the other hypothesis things are different. ypdthesis testing
we did not need a model or an explicit probability Ky, but we do nav. It is just a
scaled squared difference, so it cannot be hasedl, Wis not hard if it is assumed Gaus-
sian. W aan find fairly easily theariances?, but since we still use the statis@cwhere
we divide byaﬁ we need to do a couple of simple changes. If we dividedﬁb@hen
p(Q[H,) would be ax? distribution. Insteadp(Q|H,) is a dretched version of the?
namely

0'2 0'2
P(Q[Hy) = J—g 1}2(0—(2j Q.1
where the 1 as the secondj@ment indicates one degree of freedom as before. So we
know P(Q|H,) as well.

Now we dop the question. What is the probability lé§ or H; given the value of
the statistic. It seems that we need the help of Reomas Bayes, th#8" century
British mathematician and Presbyterian ministéno concered the first version of the
theorem that bears his name. The paper that started allakipwblished after his death
by Richard Price, a friend of his, under the tilesay dwards Solving a Problem in the
Doctrine of ChancesThe theorem (applied on the problem at hand) says that

_ P(QIH)P(Ho)
P(HQ) = L GlHe)P(Ho) + p(QIHYP(HY

and similarly for

p(Q|H.)P(Hy)
P(QIHo)P(Ho) + p(Q[H1)P(Hy)
where the upper cade is the probability of anwent like Hy and lower case is the

probability density of a randomarviable. Itis easy nw to se that whener the
Bayesian ratio

P(H.IQ) =

P(QIHo) P(Ho)
P(QIHy)P(H,)
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is greater than 1 we should chodsg, otherwise chooséd,. But we need to kne the
two numbersP(H,) and P(H;) before we compute the Bayesian ratice \@n examine
three cases.

(1) We an select a neutral prioget P(Hg) = P(H;) =0.5 This just informs our
mathematical machinery that we kmaothing about the hypothesis and bet it is
fifty fifty . Quite prudent but rather unwerding.

(2) If our application is motion genentation with static background, where most of
the scene is background that stays the sameRtdg) =. 95 and P(H,) = 0. (5.

(3) If our application is point correspondence and we search the whole second image,
then most of the Iimages are different sB(Hgy) =1.0e-6 and
P(H)) =1-1.0e-6.
One thing that is sure with this bayesian approach is that we @n&xibility rivaling
that of the elastigirl. But this flexibility comes at a pricee li¢ed a model for the alterna-
tive hypothesis. And we also need the prié@d,) and P(H;) which can be both good
and bad. Good if we kmosomething from another source, bad if wed® guess.

11.3. Hypothesis Testing vs Bayesian Ratios

Apart from these practical dirences, there is a deep philosophicafedénce
between Hypothesis Testing and Bayesian Ratios. When we compute the probability of
Hy, essentially we compute the probability of an unknown but fixed binary constant,
since the tw pixels are either the same or different. This unknown binary constant is not
a random variable, because we cannot camcai ealistic experiment with different out-
comes for this fixed unknown. So in applying the Bayes theoremaheve did here, we
assigned probability to a constant and there is rgati@nd intuitve way to do it with-
out excessve handwaving. The natural way of defining probabilityhat today is called
frequentistdefinition, is that probability is the rele# frequeng of an ezent and only
truly stochastic (random)ents hae aich a probability associated with them. So the def-
inition has beenx@anded to mean the degree of plausibility of the truth of a statement so
that even fixed (non-random) unknowns canveaprobabilities associated with them.

Statistical conseatives of the B century might not hae roticed the licentious
expansion of the definition of probabiljtput in the earh9" century some guy named
Laplace treated the mass of Saturn as a random variable and computed féctin ef
spilling the beans. “Tha’it” the conseratives said. “Saturn is not a TV celebrity on a
yo-yo diet! Its mass is a constant”. The comérgy at this point seemed to beepand
the conseratives, nav known as frequentists, the winners. The Bayes theorem was for
gotten, to be rediseered again in th€0™" century But the situation started changing in
the fifties. Pattern Recognition became an established field aad iising a lot of things
bayesian, the mass of Saturn turned out to be where Laplace said it probably was, mathe-
maticians remeed some rough spots in probability theory and yo-yo diets became popu-
lar among TV personalities.

Meanwhile the frequentists had carved an ecological niche of thvairand had
developed a very elaborate theory of probabilp he end result is that today wevka
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two camps, splitting the community of statisticians right in the middle. But on the posi-
tive sde we ha&e wo dasses of techniques to use. The frequentist sponsored omes lik
classic hypothesis testing, require minimum assumptions awe tedingering doubts

when our problem fits their strict requirements. And the omnipotent Bayesian techniques
that gve s immense freedom but require a heavieestment in assumptions and mod-

els. Choices, choices, choices.

Last but not least, the ommethods differ in that ypothesis testing needs a model
for the null hypothesis onlyhereas bayesian ratios need a model for both the null and
the alternatie. This might seem li& twice the vork, but in mag cases it is much more
than that. The underlying statistic is chosen so that we can easily apply the model and
compute the required thresholds. If wesdnane model onlythen the job of selecting a
good statistic is easyf we havetwo models then there might not exist a single statistic
on which we can apply the models easlljis can be a skostopper or the point of entry
for approximations and simplifications. Nothing is perfect in this life.

11.4. Chi Square with more Degrees of Freedom

We return nov to the hypothesis testing approach and examine what happens if we
use more pixels in testing ouypothesis. Inthe example of the previous sections we
used the squared difference between a pair of pixels as our statigtiesheft us with a
slightly unsalted taste in the mouth. There is only so much one can do with just a single
pixel difference. So we use tilsem of squared ddrencesas our statistic. If we assume
that the difference betweendwmages of the same object is just the noise and that this
noise is i.i.d. (independent, identically distributed also called white noise), zero mean
Gaussian, then

Qlyl) =2 ==

Olali] = 11i1 it (11.1)
i O On U

where the summation is understood teet@ snall patchR. This follows thex? distri-
bution as before but wittN degrees of freedom, whend in our case is the number of
pixels in the summation. &then decide on the e of significance, and look up the
tables to decide on the interval of confidence, e.g. the threshof@ dbiove which we
reject the null hypothesis.

This all sounds fine but there areotdetails. First detail is that we need to inthe
varianceo,,, with some accurac As in the single pixel case abg if we underestimate
the value ofo, by a wide margin, then we will ia ©o may false ngdives and if we
overestimate, by a wide margin too nyafalse posiires. The good news is that if the
underlying model is appropriate, then we camehgpod results wen with approximate
0, at least better than dealing with a single pixel.

The second detail is the bad news. The noise is hardly.ed. in real life and there
are mam reasons for this other than Musph Law. The two patches are not\abys per
fectly aligned, so their difference is not zengere without ary other noise. But what
makes the situation compdds that the difference is much higher around edges because
the misalignment can makus aubtract pixels from the opposite sides of the edge. The
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probability distribution of the noise then depends on tkistence of an edge in the
immediate neighborhood, so the noise is not identically dis&ib Furthermore, if there

is misalignment affecting the whole patch, then all pixels in the patch will be affected by

it and one cannot claim that the image differences are independent. The same thing hap-
pens if there is change in illumination. If a pixel becomes 1% brighten the noise is

about 1 percent of the intensity other words proportional to the intensignd thus

acain not identically distributed. And if a pixel is affected by a change of illumination, so
does gery pixel in its neighborhood, and the noise is again not independent.

Luckily the solution exists. W/just hae b havea nodel, then open a book and see
what tools the mathematiciansvieainvented before us for us. The method of choice is
the Mahalanobis Distancewhich was inented by Prasanta Chandra Mahalanobis
[1893-1972], one of the greatest statisticians who was immortalized by the @bn-
tioned distance. This distance follows tgé distribution (under Gaussian assumption)
and it is suitable for correlated data.

To use it we first hee o put our data into a vector so all the @iI[i] and I[i] in
the patchR are arranged on one dimensionattorsl; andl,. The diference of the tew
vectors is

Ar = rz - rl
and it is easy to see that Eq. (11.1) can be written in a more compact form

. . =T
5 gllma— 1] g _ Na A (11.2)

which gwves us tope that we will not hae exremely large equations. The Mahalanobis
Distance between image patchgandl, is defined as

I
D2 = Al CxAl

whereC,, is the variance a@riance matrix of the diérenceAl. The Mahalanobis dis-
tance is a generalization of Eq. (11.2) sincedgr = 021 the two of them are identical.
We will now show that the Mahalanobis distance has the statisticaM@haf the sum of
the squares of a set of uncorrelated zero mean unit variance raadabies. © do this
we define

S=VC,
or to be less inexact
CAI = S§

Matrix Sis not uniquely defined,ub this is hardly an impediment for a determined statis-
tician. We just compute the most caemient matrixS, which is in practice done with the
Choleskidecomposition. Thethe vector

V =SIAl
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has mean equal to the zero vector

o, 0 .00 .
wy = E{V} = EfS1aln= STEMIO=0
0O 0O 0 O

because the difference of theotpatches has zero mean. Anariance equal to the iden-
tity matrix

0 0o 0. . 1 .0
Cy = EDWTO= ECstalal sTo=

0 0 O 0
O 0

SEMIAI (5T =slc, ST =
O O

S'sSsT=1

in other words the elements of theeetorV are uncorrelated with zero mean and unit
variance. Then the Mahalanobis distance

Dpn=V'V =3 V[i]?

is equvalent to a sum of squares of zero mean unit variance uncorrelated raadem v
ables. Under Gaussian assumptidfp then follows they? distribution with N degrees of
freedom.

Are we there yet? Not quite. 8\havetwo more problems to solve. The first is esti-
mate the matriXC,, and second compute itsvase. D estimate the ceariance matrix
Ca We decide on a parametric form for this matrix and then we estimate the parameters.
The second problem, thevarsion of the ceariance matrix is mainly a matter of compu-
tational eficiengy. If the patchR is a modesb x5 square region, then the iance
matrix is25x 25 and it requires about 15,000 operations to herted. And a slightly
less modestl x11 regon would require about 2 million operations. Applying the Maha-
lanobis distance on mamegons would be prohibie winless we speed up the operations,
which we will shev how it can be done.
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So lets assume that the difference between the tmages is just noiseub this
noise has some structure. While in practice there amradesignificant components in
this noise, we consider only twand leave the rest as anxercise. One component is just
an i.i.d noise, lik the one that is due to the random\atrof photons at each pixel of the
CCD, or due to the electron shot noise. Since we are dealing with a whold patdbh
we still handle as aector we wse a vector of independent randoamiablesng with zero
mean and ariances? to represent this noise.&Mso hare random fluctuations of illumi-
nation which is a single scalar random variable with zero mean afahees?. Since
these fluctuations increase or decrease the intensity proportionally then the homse is
so the total noise is

Al =ng+1;n;. (11.3)

Since all the components of the noiseehaero meanAl has zero mean as well. The
covariance matrixCy, is

0 0 0 _O 0,0
CA|E|:AIA| L= EEnSnSD-'-IiEl:n”:li

0 O O O 0 O (11.4)
oll+aflyl].

The next question is hoto compute the parametesg ando?. We dther compute them

from first principles, lile find hav much shot noise we kia in a prticular model of the
camera, under the current conditions (bliah!) or estimate them. If you choose to estimate
them then there are not that npashoices, either Maximum Likelihood, perhaps with a

bit of Bayesian flaor, if we havea good guess what these parameters should look like, or
Method of the Moments.

One might notice that it would be more accurate to write the second term of Eq.
(11.3) as(l; + ng)n; instead, to include in otheronds the cross-talk between theotw
noises. It vwuld be more correct, indeed. This would change the first term of Eq. (11.4) to
(02 + o20?)1. Since the noise is usually small, the product of the wariances will be an
even amaller numberBut even then if the noise is not small, we can replage+ o20?)
with a nev variableg?, and the form of the equation is preserved, so unless we attempt to
compute these parameters from first principles, the inclusion of the of the cross-talk, does
not change the process.
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