
CHAPTER 3

Introduction to Statistical Estimation

1. The Simplest Kind of Statistics

Least Squares is the simplest and most intuitive kind of statistics and often the most
useful. The most straightforward application is as follows. We hav ea set of quantities that
we would like to be zero or as close to zero as possible and they all depend on a set of
unknowns. We take the squares of all these quantities, sum them up and then minimize
this sum with respect to the unknowns. There are many alternatives to least squares that
sometimes have interesting properties (most notably robustness to outliers) but least
squares is not only the simplest but is also the basis for most of the alternatives.

2. Point in the Middle

Consider the following very simple problem. We want to find a pointP and all we
have is a set of several approximations ofP which we callPi, i = 1. .N . If of course all
the Pis are identical the choice is easy. Otherwise we would like P to be as close to all of
them as possible. We form the sum of the squared differences

Q(P) =
N

i=1
Σ(Pi − P)2.

The standard way to minimizeQ is to take its derivatives with respect to the unknowns
and equate them to zero. Solving these equations will give us P, the vector of the
unknowns. In this very simple problem solving the equations is easy, but taking the
derivatives is slightly more complex. We examine two ways to take these derivatives.
One is scalar (element by element) derivatives and the other is vector derivatives.

2.1. Scalar Derivatives

Our unknowns are the elements of the vectorP

P =







p1

p2

. . .

pK







and our data are the vectorsPi

Spetsakis Computer Vision



Computer Vision Spetsakis

Pi =







pi1

pi2

. . .

piK







So

Q(P) =
N

i=1
Σ

K

j=1
Σ(pij − p j)

2

and

∂Q(P)

∂ pk
=

N

i=1
Σ

K

j=1
Σ ∂

∂ pk
(pij − p j)

2 =

−2
N

i=1
Σ

K

j=1
Σ

∂ p j

∂ pk
(pij − p j) = −2

N

i=1
Σ

K

j=1
Σ δ jk(pij − p j)

whereδ ij is the Kronecker delta, e.g.δ ij = 0 iff i ≠ j andδ ii = 1 which of course makes
perfect sense: the derivative of an unknown with respect to itself is equal to one and the
derivative of an unknown with respect to a different unknown is zero. The delta affords us
some simplifications, so

∂Q(P)

∂ pk
= −2

N

i=1
Σ(pik − pk)

which if we equate to zero we get

pk =

N

i=1
Σ pik

N

e.g. every element of the unknown vector is the average of the corresponding elements of
the data.

2.2. Vector Derivatives

A more compact and mainly more elegant way of doing the same thing is taking
vector derivatives. Most of the rules of scalar derivatives apply, some with a small quirk.
Let’s start.

The notation

∂Q(P)

∂P

indicates a vector whose elements are the scalar derivatives of Q(P) with respect to the
corresponding element ofP (rememberQ is a scalar). Sometimes the “grad” notation is
used to indicate the same thing
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∂Q(P)

∂P
= ∇PQ(P)

where the subscriptP is the vector with respect to which the derivatives are taken. If it is
obvious what this vector is (in many physics problems it is always the position vector) it
is omitted. So

∂Q(P)

∂P
=

∂
∂P

N

i=1
Σ(Pi − P)2 =

N

i=1
Σ ∂

∂P


(Pi − P)T(Pi − P)


=

2
N

i=1
Σ 


∂

∂P
(Pi − P)T 


(Pi − P) = −2

N

i=1
Σ 


∂

∂P
PT 


(Pi − P)

where the derivative of Pi is zero, because it is constant.The derivative of a row vector
with with respect to a column vector is a matrix. Every row of this matrix is the derivative
of the row vector with the corresponding element of the column vector. In our case the
derivative of P with respect to itself is the identity matrix1. So

∂Q(P)

∂P
= 2

N

i=1
Σ1(Pi − P) = 2

N

i=1
Σ(Pi − P)

which if we equate to zero we get

(2.1)
P =

N

i=1
Σ Pi

N

which is essentially the same as before.

3. Line Fitting

In the problem above we had a collection of pointsPi and we found a pointP that is
closest to all of them, in the least squares sense. We can try something slightly more com-
plex now, like finding a linel that is closest to all pointsPi. Let line l be represented by
two vectors

l = (p, q)

where a pointPi belongs tol if f there is aλ such thatp + λq = Pi. Vector p is a point on
the line and vectorq is the direction of the line. There are other ways to represent a line
but this one suits our purpose better.

Since we want to minimize the distance of the pointsPi from the linel we first need
to express this distance as a nice and easy to use expression. There are two equivalent
ways to define the point to line distance. The one is to define a normal line that goes
through the point and intersects the linel at a right angle and then measure the distance of
the point from the linel along the normal line. The second way is to find the distance of
the pointPi from a pointP′i that lies on the linel and then slide the pointP′i along the
line l till this distance is minimized. This minimal distance is the one we want. Since we
have the machinery to minimize things we opt for the second approach. If you have a

18 Ch. 3. Sec. 2. Point in the Middle



Computer Vision Spetsakis

hammer everything looks like a nail.

So the (squared) distanceD2
i of the pointPi from the linel is

D2
i =

λ
min(Pi − p − λq)2

but if we want to do anything useful with it we have to get rid of the min symbol by find-
ing the minimizing with respect toλ . As before we take derivatives

∂(Pi − p − λq)2

∂λ
= −2qT(Pi − p − λq)

and by equating it to zero we get

λ =
qT(Pi − p)

qT q

which gives us the expression for distance

D2
i = 


(Pi − p) −

qqT

qT q
(Pi − p)



2

which, striving for elegance we rewrite as

(3.1)D2
i = 


(1 −

qqT

qT q
)(Pi − p)



2

.

Now we hav ean expression for the distance of a pointPi from the linel and it is already
squared. To proceed with our least squares we sum up all these squared distances and find
the line parametersp andq that minimize this sum. We start by defining the sum

Q(p, q) =
N

i=1
Σ D2

i

and we take the derivatives first with respect top

∂Q(p, q)

∂ p
=

N

i=1
Σ ∂D2

i

∂ p
= −2

N

i=1
Σ ∂ pT

∂ p
(1 −

qqT

qT q
)(1 −

qqT

qT q
)(Pi − p) =

−2
N

i=1
Σ(1 −

qqT

qT q
)(1 −

qqT

qT q
)(Pi − p) =

−2(1 −
qqT

qT q
)(1 −

qqT

qT q
)

N

i=1
Σ(Pi − p)

which we can equate to zero. We can verify that

(3.2)
p =

N

i=1
Σ Pi

N
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satisfies the resulting equation, although it is not a unique solution. Sincep is just a point
on the line it is as good as any other point on the line. But we prefer the one given by Eq.
(3.2) because it is identical to the one given by Eq. (2.1) and does not containq.

On toq now. It appears that Eq. (3.1) is not elegant enough and we should improve
it. Consider the following well known identities for a vectorv

v2 = v ⋅ v = vT v = tr(vvT )

wheretr(. . .) is the trace operator (sum of diagonal elements).We are mainly interested
in the last version to apply it to Eq. (3.1) which becomes

Q(p, q) =
N

i=1
Σ tr




1 −

qqT

qT q


(Pi − p)(Pi − p)T 


1 −

qqT

qT q





and by noticing that the trace operator is linear and that the first and last parenthesized
quantities do not depend on the indexi we can rewrite it as

Q(p, q) = tr



1 −

qqT

qT q






N

i=1
Σ(Pi − p)(Pi − p)T 




1 −

qqT

qT q





=

N tr



1 −

qqT

qT q


C


1 −

qqT

qT q





= N tr



1 −

qqT

qT q




1 −

qqT

qT q


C



where

C =

N

i=1
Σ(Pi − p)(Pi − p)T

N
and we applied the following property of the trace for two matricesA andB of appropri-
ate dimensions

tr(AB) = tr(BA)

Then noticing that the product



1 −

qqT

qT q




1 −

qqT

qT q



=

1 +
qqT qqT

qT qqT q
−

qqT

qT q
−

qqT

qT q
=



1 −

qqT

qT q



Q(p, q) = N tr


C


1 −

qqT

qT q





and by invoking the above property of the trace we get
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(3.3)Q(p, q) = N tr(C) − N tr


qT Cq

q2



which is undoubtedly the most elegant of equations.

Matrix C is a constant so it does not affect the minimization which can be achieved
by maximizing the scalar

qT Cq

q2

which is just a Rayleigh Quotient and is maximized whenq is the eigenvector that corre-
sponds to the largest eigenvalue.

There are a few remarks that we can make on this result. First, we find the line
direction q without taking derivatives, just by using a canned theorem (we, in other
words, outsourced the derivatives to Dr. Rayleigh). Second the pointsPi can be of any
dimension: two dimensional points on the image plane, three dimensional points in the
real world or ten dimensional characters in a Douglas Adams novel. Third we can extend
the result to structures of higher dimensions than lines, like fitting a plane in a four
dimensional space, as we might need if we fit an affine flow to a set of image displace-
ment data. And finally, the same technique can be applied to find the principal direction
of any elongated object, even if we are not particularly interested in line fitting.
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