Spetsakis Computer Vision

4. Constrained Optimization

Quite often the solution we are seeking comes with strings attacleedo V@t just
want to minimize some functionubwe need to do so subject to certain constraintss Let’
see a realistic example.

Assume we are tracking the projectiond\bpoints in a sequence of images and we
want to compute the velocity of the pointse\Wnsult the visual motion literature and we
decide to use a certain functi@Qfu, v) that is minimized by the most probahleandv.

But we also knw that the scene is a rigid scene, whickegius a pwerful constraint,

since a rigid motion is a special kind of motion thategirise to specific patterns of
velocities for the projections of the points. So what weehia a mnimization tempered

by a constraint. These kinds of minimizations appear inyrdestiplines of Science and
Engineering as well Political Science, Economics etc.

The simplest way to do the minimization is to use the constraint te flwne or
more of the unknens, and eliminate it from the minimization. This is the method of
choice when such elimination is possible. Unfortunateiy not always.

4.1. Lagrange Multipliers

One of the most popularays to do constraint minimization is Lagrange Multipli-
ers. It works like magic, ones feels difficulty believing it when one sees it but it has been
used on an extreme range of things, from flying in the air to sorting your socks. It is the
Mary Poppins of methods.

Assume you want to minimiz@(p) wherep is a vector of dimensioK subject to a
constraintc(q) = 0 wherec(q) is a vector valued function of dimensidvi, M < K. It can
be shavn that this constrained minimization is eglent to performing unconstrained
minimization to the following expression

L(p,4) =Q(p) + A" c(p) (4.1)

whereA is a vector of dimensioM. We row haveK + M unknawvns, the ectorsp and A
and an equal number of equationse Wlve for the unknowns, thm away the vector A
and keepp. That's dl? Yes, that dl.

Yet, as opposed to Mary Poppins, the method is not just perfeceriyn\way. If we
eliminatedM unkowns by using the constrainfq) = 0 we would hare K — M left. Now
we hae K + M. Moreover, as we $all see latersome of the nicer properties that we
have been addicted to, are lost with Lagrange multipliers.

WEell, magic is not really magic, it is mathematics or science. At leass thatt
some scientists sayhen hav do the Lagrange Multipliers work? The exact proof &yw
beyond the scope of the text and the patience of the sane among its reaidarsitle
intuition can be helpful. W do his with a simple tw dimensional example where we
minimize a function of tw variablesx andy that is subject to an 1-D constraint xand
y sketched in Fig. 4.1. The constran{, y) = 0 is represented by the almost straight line
running from top left to about bottom right. The functiBrwe want to minimize is
depicted by a f& of its level crossings atS(x, y) =8,6,4,2 These lgel crossings are
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usually closed cums. If the constraint was abseéhtvould achiee its minimum some-
where in the innerval, but since we are obliged to choose a solution that satisfies the
constraint, we hae © move p and down the constraint cuee(x, y,) = 0 until we find a
minimum. The minimum on the constraint ceris where this curg touches a el
crossing. In this example thisvi crossing is depicted by a dotted line. So the minimum
is achieed right at the point of contact.

Now that we knav that the minimum is achved at sich a point of contact all we
have o do is ask a mathematician to translate this to equations andampetent mathe-
matician will tell us that at such a point theotaurves hae gadients that are a scalar
multiples of each othetf we name this scalarattor-A, we will have little difficulty
arriving at Eq. (4.1).

4.2. Application to Rayleigh Quotient

We @n try the Lagrangian multipliers on something with known answer before we
jump head first to something with unkmo answerWhat better than the Rayleigh Quo-
tient we met a section ago.

q'Cq

R= 7

Figure 4.1: The minimum without the constraint should be somewhere in the middle of the inner-
most contour, but with the constraint the minimum is where the constraint line and the
dotted line touch.
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can be simplified a bit if we set= ﬁql

R=s'Cs (4.2)

and we can ne find s without nasty denominators and the furifferentiation rules for
division. But from the aba definition we hae the constraint thatis a unit vectqror

1-¢=0. (4.3)
Since we hee a éngle constraintq is a scalarThe quantity to minimize is
L(s,A) =s"Cs+ A(L- ). (4.4)

Differentiation with respect t@ will give ws the original constraint from Eq. (4.3) and
differentiation with respect to the original unknownwill give

0
— L(s,A) =2Cs-21
s (s, A) S S

which, if we equate to zero we get
Cs= s

or thats is an eigewector of matrixC. Almost done. W know that the solution is an
eigervector but there are as maof them as dimensions in matr. So we eplaces
with eigervector e in Eq. (4.2)

R=¢/Ce =gl g =1,

and we see that it is equal to the corresponding elyen So if we want to minimiz&
thens is the eigewector corresponding to the smallest engne. If we want to maxi-
mize R, to the largest eigemlue.

5. Overdetermined Linear Systems

Quite often we hee b lve a ystem of linear equations where werdaany more
equations than we need but each one iswfdoality. If we discard the extra equations
and sole the linear system, then we might gaetIquality results. The solution is nothing
less than least squares.#ioould it be. V& ae in the chapter about least squares.

As always we tale dl these equations, puverything in the left hand side, if it is not
there alreadysgquare them and add them togettMmimizing this sum is a simple issue
of differentiating with respect to the unknowns.

Let, then,A be aM x N matrix whereM > N, b be aM-dimensional known ector
and x an N-dimensional vector of unkmms. The quest is to find the best possible solu-
tion to

AX=Dhb

which we do by differentiating the squared normAaf— b, which is nothing more than
the sum of the squares of the elementévof b
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which we equate to zero and get

2%6—)( (Ax—b)= (Ax — b) = 2AT(Ax - b) = 2AT A- ATb

ATAx = ATb
what statisticians call “normal equatioﬁs”

Matrix AT A has a host of nice properties. It is symmetric, it is nagathe dcefinite
(and if invertible positve definite) and requires less storage than the original matrix
and more often than not we do net® need to compute matriA as an intermediate
result at all. If, at the set up stage of the problem tivs & of A and the corresponding
elementsh; of b (e.g. the individual equations and the correspondingvked are pro-
duced successily then AT Aand ATb can be computed by

ATA=3 AAS
and
ATb:ZAibi

both of which can easily be done incrementally.

The definiteness oA” A males it easy to wert and agy matrix inversion method
performs better on this than other non-definite equations. And as if this was not enough,
there are methods best suited for such normal equations, most rédajlgate Gradi-
ent, Cholesky Factorization, Sngular Value Decomposition, Successive Overrelaxation
etc. The wariety is stunning if not truly disheartening to anyone that heer heard ag
of these methods. But hold this pill. Rathewfef these are needed to sweriin Com-
puter Vision.

5.1. Overdetermined System with Additional Constraints

Let's look at a problem that combines theotyrevious techniques. & have an
overdetermined system of linear equations and we want te sbklubject to a single
(scalar) linear constraint. It should not be hard, and in a sense it is not.

Let, then as beforeA be aM x N matrix whereM > N, b be aM-dimensional
known vector, x an N-dimensional vector of unknowns andan N-dimensional knan
vector. We want to minimize

(Ax = by?

isince there is no mention in the literature of apnormal equations, one can speculate that normal here means orthogonal.
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subject to the constraint
c'x=0
which we knav is minimized for the same value &fas
L(x, 1) = (Ax-b)?+ Ac x
whereA is an scalar unknown. If we differentidt€x, 1) we get

% L(x, 1) =2AT(Ax-b)+ Ac=0

and

0

— L(x,A)=c"x=0

3, (> A)

which are linear equations and should be easy to solve. As wedaydinite system of
linear equations can be written in matrix form so we combine thequations together

to get

[l ) g O 0O |
[RATA . cOOxO RATbQO
oo o=0O |
g O 0O |

c! ob0O) O O o O

but unfortunately the matrix in the left hand side is not pesitkfinite. This does not
mean that the system is unsolvable, just means that it is much. idrdenoral of the
story: use Lagrange multipliers for analytic rather than numerical work, or do something
about your addiction to posig definiteness.
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Exercises
1. Find the extrema of the Rayleigh Quotient without using Lagrangian multipliers.

2. Let A be a symmetric matrix and its time dewative. Find the time dewative o one
of its eigewalue and eigevector pairs, saylg, €. No, no, no. That' s too hard. Shahat
the dervatives ae:

/io=egAeo

) N-1 ele;r .
=5 A

% igl)lo‘/‘i %

3. Letu; be 2-D flav vectors measured at locatiors In a four dimensional space form
the vector

|
Vi

OO

[u
= 0.
O

X0
and fit a plane through these points. Using this plane expresadlan #ine function of
X.

4. Letu[i], i =1..N, be a ector of unknowns and
: L dmec
Uglil =u)glil = 2 uli - jlglij]
1= min
be the cowolution of u with cornvolution kernel or templatg. Find theu that minimizes

N

iz%%[i’ KJu[i] + Ali, KJug[i] +[i, k]D
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