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4. Constrained Optimization

Quite often the solution we are seeking comes with strings attached. We do not just
want to minimize some function, but we need to do so subject to certain constraints. Let’s
see a realistic example.

Assume we are tracking the projections ofN points in a sequence of images and we
want to compute the velocity of the points. We consult the visual motion literature and we
decide to use a certain functionQ(u, v) that is minimized by the most probableu andv.
But we also know that the scene is a rigid scene, which gives us a powerful constraint,
since a rigid motion is a special kind of motion that gives rise to specific patterns of
velocities for the projections of the points. So what we have is a minimization tempered
by a constraint. These kinds of minimizations appear in many disciplines of Science and
Engineering as well Political Science, Economics etc.

The simplest way to do the minimization is to use the constraint to solve for one or
more of the unknowns, and eliminate it from the minimization. This is the method of
choice when such elimination is possible. Unfortunately, it is not always.

4.1. Lagrange Multipliers

One of the most popular ways to do constraint minimization is Lagrange Multipli-
ers. It works like magic, ones feels difficulty believing it when one sees it but it has been
used on an extreme range of things, from flying in the air to sorting your socks. It is the
Mary Poppins of methods.

Assume you want to minimizeQ(p) wherep is a vector of dimensionK subject to a
constraintc(q) = 0 wherec(q) is a vector valued function of dimensionM , M < K . It can
be shown that this constrained minimization is equivalent to performing unconstrained
minimization to the following expression

(4.1)L(p, λ) = Q(p) + λT c(p)

whereλ is a vector of dimensionM . We now hav eK + M unknowns, the vectorsp andλ
and an equal number of equations. We solve for the unknowns, throw away the vectorλ
and keepp. That’s all? Yes, that’s all.

Yet, as opposed to Mary Poppins, the method is not just perfect in every way. If we
eliminatedM unkowns by using the constraintc(q) = 0 we would have K − M left. Now
we have K + M . Moreover, as we shall see later, some of the nicer properties that we
have been addicted to, are lost with Lagrange multipliers.

Well, magic is not really magic, it is mathematics or science. At least that’s what
some scientists say. Then how do the Lagrange Multipliers work? The exact proof is way
beyond the scope of the text and the patience of the sane among its readers, but a little
intuition can be helpful. We do this with a simple two dimensional example where we
minimize a function of two variablesx andy that is subject to an 1-D constraint onx and
y sketched in Fig. 4.1. The constraintc(x, y) = 0 is represented by the almost straight line
running from top left to about bottom right. The functionS we want to minimize is
depicted by a few of its level crossings atS(x, y) = 8, 6,4, 2. These level crossings are
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usually closed curves. If the constraint was absentS would achieve its minimum some-
where in the inner oval, but since we are obliged to choose a solution that satisfies the
constraint, we have to move up and down the constraint curve c(x, y, ) = 0 until we find a
minimum. The minimum on the constraint curve is where this curve touches a level
crossing. In this example this level crossing is depicted by a dotted line. So the minimum
is achieved right at the point of contact.

Now that we know that the minimum is achieved at such a point of contact all we
have to do is ask a mathematician to translate this to equations and any competent mathe-
matician will tell us that at such a point the two curves have gradients that are a scalar
multiples of each other. If we name this scalar factor −λ , we will have little difficulty
arriving at Eq. (4.1).

4.2. Application to Rayleigh Quotient

We can try the Lagrangian multipliers on something with known answer before we
jump head first to something with unknown answer. What better than the Rayleigh Quo-
tient we met a section ago.
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Figure 4.1: The minimum without the constraint should be somewhere in the middle of the inner-
most contour, but with the constraint the minimum is where the constraint line and the
dotted line touch.
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can be simplified a bit if we sets =
q

|q|

(4.2)R = sT Cs

and we can now find s without nasty denominators and the funny differentiation rules for
division. But from the above definition we have the constraint thats is a unit vector, or

(4.3)1 − s2 = 0.

Since we have a single constraint,λ is a scalar. The quantity to minimize is

(4.4)L(s, λ) = sT Cs + λ(1 − s2).

Differentiation with respect toλ will give us the original constraint from Eq. (4.3) and
differentiation with respect to the original unknownsq will give

∂
∂s

L(s, λ) = 2Cs − 2λ s

which, if we equate to zero we get

Cs = λ s

or that s is an eigenvector of matrixC. Almost done. We know that the solution is an
eigenvector but there are as many of them as dimensions in matrixC. So we replaces
with eigenvector ei in Eq. (4.2)

R = eT
i Cei = λ ie

T
i ei = λ i

and we see that it is equal to the corresponding eigenvalue. So if we want to minimizeR
then s is the eigenvector corresponding to the smallest eigenvalue. If we want to maxi-
mize R, to the largest eigenvalue.

5. Overdetermined Linear Systems

Quite often we have to solve a system of linear equations where we have many more
equations than we need but each one is of low quality. If we discard the extra equations
and solve the linear system, then we might get low quality results. The solution is nothing
less than least squares. How could it be. We are in the chapter about least squares.

As always we take all these equations, put everything in the left hand side, if it is not
there already, square them and add them together. Minimizing this sum is a simple issue
of differentiating with respect to the unknowns.

Let, then,A be aM × N matrix whereM > N , b be aM-dimensional known vector
and x an N -dimensional vector of unknowns. The quest is to find the best possible solu-
tion to

Ax = b

which we do by differentiating the squared norm ofAx − b, which is nothing more than
the sum of the squares of the elements ofAx − b
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∂
∂x

(Ax − b)2 =
∂

∂x


(Ax − b)T(Ax − b)


=

2


∂
∂x

(Ax − b)


T

(Ax − b) = 2AT(Ax − b) = 2AT A − AT b

which we equate to zero and get

AT Ax = AT b

what statisticians call “normal equations”‡.

Matrix AT A has a host of nice properties. It is symmetric, it is non-negative definite
(and if invertible positive definite) and requires less storage than the original matrixA
and more often than not we do not even need to compute matrixA as an intermediate
result at all. If, at the set up stage of the problem the rows Ai of A and the corresponding
elementsbi of b (e.g. the individual equations and the corresponding knowns) are pro-
duced successively then AT A andAT b can be computed by

AT A =
i
Σ Ai AT

i

and

AT b =
i
Σ Aibi

both of which can easily be done incrementally.

The definiteness ofAT A makes it easy to invert and any matrix inversion method
performs better on this than other non-definite equations. And as if this was not enough,
there are methods best suited for such normal equations, most notablyConjugate Gradi-
ent, Cholesky Factorization, Singular Value Decomposition, Successive Overrelaxation
etc. The variety is stunning if not truly disheartening to anyone that has never heard any
of these methods. But hold this pill. Rather few of these are needed to survive in Com-
puter Vision.

5.1. Overdetermined System with Additional Constraints

Let’s look at a problem that combines the two previous techniques. We hav e an
overdetermined system of linear equations and we want to solve it subject to a single
(scalar) linear constraint. It should not be hard, and in a sense it is not.

Let, then as before,A be a M × N matrix whereM > N , b be a M-dimensional
known vector, x an N -dimensional vector of unknowns andc an N -dimensional known
vector. We want to minimize

(Ax − b)2

‡since there is no mention in the literature of any abnormal equations, one can speculate that normal here means orthogonal.
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subject to the constraint

cT x = 0

which we know is minimized for the same value ofx as

L(x, λ) = (Ax − b)2 + λcT x

whereλ is an scalar unknown. If we differentiateL(x, λ) we get

∂
∂x

L(x, λ) = 2AT(Ax − b) + λc = 0

and

∂
∂λ

L(x, λ) = cT x = 0

which are linear equations and should be easy to solve. As we know any finite system of
linear equations can be written in matrix form so we combine the two equations together
to get
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but unfortunately the matrix in the left hand side is not positive definite. This does not
mean that the system is unsolvable, just means that it is much harder. The moral of the
story: use Lagrange multipliers for analytic rather than numerical work, or do something
about your addiction to positive definiteness.
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Exercises

1. Find the extrema of the Rayleigh Quotient without using Lagrangian multipliers.

2. Let A be a symmetric matrix anḋA its time derivative. Find the time derivative of one
of its eigenvalue and eigenvector pairs, sayλ0, e0. No, no, no. That’ s too hard. Show that
the derivatives are:

λ̇0 = eT
0 Ȧe0

ė0 =
N−1

i=1
Σ eie

T
i

λ0 − λ i
Ȧe0

3. Let ui be 2-D flow vectors measured at locationsxi. In a four dimensional space form
the vector

vi =





ui

. . .

xi






and fit a plane through these points. Using this plane express flow as an affine function of
x.

4. Letu[i], i = 1. .N , be a vector of unknowns and

ug[i] = u(* )g[i] =
jmax

j= jmin

Σ u[i − j]g[ j]

be the convolution of u with convolution kernel or templateg. Find theu that minimizes

i
Σ

k
Σ 


α[i, k]u[i] + β[i, k]ug[i] + c[i, k]



2
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