
1

1 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

CSE 3402: Intro to Artificial Intelligence 
Game Tree Search

● Required readings: Chapter 6, sections 6.1,
6.2, 6.3, 6.6.

2 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Generalizing Search Problems
● So far: our search problems have assumed

agent has complete control of environment
■ state does not change unless the agent (robot)

changes it.
● makes a straight path to goal state feasible.

● Assumption not always reasonable
■ stochastic environment (e.g., the weather, traffic

accidents).
■ other agents whose interests conflict with yours

2

3 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Generalizing Search Problems
●  In these cases, we need to generalize our

view of search to handle state changes that
are not in the control of the agent.

● One generalization yields game tree search
■ agent and some other agents.
■ The other agents are acting to maximize their

profits
● this might not have a positive effect on your

profits.

4 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Two-person Zero-Sum Games

● Two-person, zero-sum games
■ chess, checkers, tic-tac-toe, backgammon, go, “find

the last parking space”
■ Your winning means that your opponent looses, and

vice-versa.
■ Zero-sum means the sum of your and your

opponent’s payoff is zero---any thing you gain come
at your opponent’s cost (and vice-versa). Key insight:

■ how you act depends on how the other agent acts (or
how you think they will act)
● and vice versa (if your opponent is a rational player)

3

5 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

More General Games
● What makes something a game?
■ there are two (or more) agents influencing state

change
■ each agent has their own interests
● e.g., goal states are different; or we assign

different values to different paths/states
■ Each agent tries to alter the state so as to best

benefit itself.

6 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

More General Games
● What makes games hard?

■ how you should play depends on how you think
the other person will play; but how they play
depends on how they think you will play; so how
you should play depends on how you think they
think you will play; but how they play should
depend on how they think you think they think
you will play; …

4

7 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

More General Games

● Zero-sum games are “fully competitive”
■  if one player wins, the other player loses
■ e.g., the amount of money I win (lose) at poker is the

amount of money you lose (win)
● More general games can be “cooperative”
■ some outcomes are preferred by both of us, or at

least our values aren’t diametrically opposed
● We’ll look in detail at zero-sum games
■ but first, some examples of simple zero-sum and

cooperative games

8 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Game 1: Rock, Paper Scissors
● Scissors cut paper,

paper covers rock, rock
smashes scissors

● Represented as a
matrix: Player I chooses
a row, Player II chooses
a column

● Payoff to each player in
each cell (Pl.I / Pl.II)

● 1: win, 0: tie, -1: loss
■ so it’s zero-sum

R P S

0/0

0/0

0/0

-1/1

-1/1

-1/1 1/-1

1/-1

1/-1

R

P

S

Player II

Pl
ay

er
 I

5

9 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Game 2: Prisoner’s Dilemma
● Two prisoner’s in separate cells, DA doesn’t

have enough evidence to convict them
● If one confesses, other doesn’t:
■ confessor goes free
■ other sentenced to 4 years

● If both confess (both defect)
■ both sentenced to 3 years

● Neither confess (both cooperate)
■ sentenced to 1 year on minor charge

● Payoff: 4 minus sentence

Coop Def

3/3

1/1

0/4

4/0

Coop

Def

10 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Game 3: Battlebots
● Two robots: Blue & Red
■ one cup of coffee, one tea left
■ both C, F prefer coffee (value 10)
■ tea acceptable (value 8)

● Both robot’s go for Coffee
■ collide and get no payoff

● Both go for tea: same
● One goes for coffee, other for tea:
■ coffee robot gets 10
■ tea robot gets 8

C T

0/0

0/0

10/8

8/10

C

T

6

11 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Two Player Zero Sum Games

● Key point of previous games: what you should
do depends on what other guy does

● Previous games are simple “one shot” games
■ single move each
■  in game theory: strategic or normal form games

● Many games extend over multiple moves
■ e.g., chess, checkers, etc.
■  in game theory: extensive form games

● We’ll focus on the extensive form
■ that’s where the computational questions emerge

12 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Two-Player, Zero-Sum Game: Defn
● Two players A (Max) and B (Min)
● set of positions P (states of the game)
● a starting position s ∊ P (where game begins) 
● terminal positions T ⊆ P (where game can end) 
● set of directed edges EA between states (A’s 
moves) 

● set of directed edges EB  between states (B’s 
moves) 

● utility or payoff function U : T → ℝ (how good is each 
terminal state for player A) 
■ why don’t we need a utility function for B? 

7

13 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Intuitions

● Players alternate moves (starting with Max)
■ Game ends when some terminal p ∊ T is reached

● A game state: a position-player pair
■ tells us what position we’re in, whose move it is

● Utility function and terminals replace goals
■ Max wants to maximize the terminal payoff
■ Min wants to minimize the terminal payoff

● Think of it as:
■ Max gets U(t), Min gets –U(t) for terminal node t
■ This is why it’s called zero (or constant) sum

14 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Tic-tac-toe: States
Turn=Max(X) Turn=Max(X)

Min(O)

Turn=Min(O)

Max(X)

U = -1 U = +1

X X

O

X X

X

O

O

O

X X
X

X O
O

O

start

another

terminal
terminal

   

8

15 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Tic-tac-toe: Game Tree

X

X

X

X

X

X

X X

X
X

O O
O

O
O

O

X
U = +1

Max

Max

Min

Min

a

b c d

16 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Game Tree
● Game tree looks like a search tree
■ Layers reflect the alternating moves

● But Max doesn’t decide where to go alone
■ after Max moves to state a, Min decides whether

to move to state b, c, or d
● Thus Max must have a strategy
■ must know what to do next no matter what move

Min makes (b, c, or d)
■ a sequence of moves will not suffice: Max may

want to do something different in response to b,
c, or d

● What is a reasonable strategy?

9

17 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Minimax Strategy: Intuitions

t1 t2 t3 t4 t5 t6 t7

s1 s2 s3

s0 max node

min node

terminal

7 -6 4 3 9 -10 2

The terminal nodes have utilities.
But we can compute a “utility” for the non-terminal 
states, by assuming both players always play their
best move.

18 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Minimax Strategy: Intuitions

t1 t2 t3 t4 t5 t6 t7

s1 s2 s3

s0 max node

min node

terminal

7 -6 4 3 9 -10 2
If Max goes to s1, Min goes to t2

 * U(s1) = min{U(t1), U(t2), U(t3)} = -6

If Max goes to s2, Min goes to t4

 * U(s2) = min{U(t4), U(t5)} = 3

If Max goes to s3, Min goes to t6

 * U(s3) = min{U(t6), U(t7)} = -10

So Max goes to s2: so

U(s0)

 = max{U(s1), U(s2), U(s3)}

 = 3

10

19 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Minimax Strategy

● Build full game tree (all leaves are terminals)
■ root is start state, edges are possible moves, etc.
■  label terminal nodes with utilities

● Back values up the tree
■ U(t) is defined for all terminals (part of input)
■ U(n) = min {U(c) : c a child of n} if n is a min node
■ U(n) = max {U(c) : c a child of n} if n is a max node

20 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Minimax Strategy

● The values labeling each state are the values
that Max will achieve in that state if both he
and Min play their best moves.
■ Max plays a move to change the state to the highest

valued min child.
■ Min plays a move to change the state to the lowest

valued max child.
●  If Min plays poorly, Max could do better, but

never worse.
■  If Max, however know that Min will play poorly,

there might be a better strategy of play for Max
than minimax!

11

21 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Depth-first Implementation of
MinMax

● Depth-first evaluation of game tree
■ terminal(N) holds if the state (node) is a terminal

node. Similarly for maxMove(N) (Max player’s move)
and minMove(N) (Min player’s move).

■ utility of terminals is specified as part of the input

utility(N,U) :-
terminal(N), utility(N,U).

utility(N,U) :-
maxMove(N), children(N,CList),

utilityList(CList,UList),

max(UList,U).

utility(N,U) :-
minMove(N), children(N,CList),

utilityList(CList,UList),

min(UList,U).

22 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Depth-first Implementation of
MinMax

■ utilityList simply computes a list of utilities, one for
each node on the list.

■ The way Prolog executes implies that this will
compute utilities using a depth-first post-order
traversal of the game tree.
● post-order (visit children before visiting parents).

utilityList([],[]). 
utilityList([N|R],[U|UList])

:- utility(N,U),utilityList(R,UList).

12

23 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Depth-first Implementation of MinMax

● Notice that the game tree has to have finite
depth for this to work

● Advantage of DF implementation: space
efficient

24 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Visualization of DF-MinMax

t3 t4 t5

t11 t12

t25 t26

s1 s13 s16

s0

s2 s6 s17 s24

s21 s18

t14 t15

t22 t23 t19 t20

s10 s7

t8 t9

Once s17 eval’d, no need to store
tree: s16 only needs its value.
Once s24 value computed, we can
 evaluate s16

13

25 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Pruning

● It is usually not necessary to examine entire
tree to make correct minimax decision

● Assume depth-first generation of tree
■ After generating value for only some of n’s children

we can prove that we’ll never reach n in a MinMax
strategy.

■ So we needn’t generate or evaluate any further
children of n !

● Two types of pruning (cuts):
■ pruning of max nodes (α-cuts)
■ pruning of min nodes (β-cuts)

26 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Cutting Max Nodes (Alpha Cuts)
●  At a Max node n:
■  Let β be the lowest value of n’s siblings examined so far (siblings

to the left of n that have already been searched)
■  Let α be the highest value of n’s children examined so far

(changes as children examined)

max node
min node
terminal

s1 s13 s16

s0

s2 s6

T3
8

T4
10

T5
5

α =8 α=10 α=10 5
β =5 only one sibling value known  

sequence of values for α as s6’s
children are explored

14

27 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Cutting Max Nodes (Alpha Cuts)
● If α becomes ≥ β we can stop expanding

the children of n
■ Min will never choose to move from n’s parent to

n since it would choose one of n’s lower valued
siblings first.

n

P

s1 s2 s3

14 12 8

 β = 8

2 4 9

 α = 2 4 9

min node

28 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Cutting Min Nodes (Beta Cuts)
●  At a Min node n:
■  Let β be the lowest value of n’s children examined so far

(changes as children examined)
■  Let α be the highest value of n’s sibling’s examined so far

(fixed when evaluating n)

max node
min node
terminal

s1 s13 s16

s0

s2 s6 α =10

β =5 β =3

15

29 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Cutting Min Nodes (Beta Cuts)
● If β becomes ≤ α we can stop expanding

the children of n.
■ Max will never choose to move from n’s parent to

n since it would choose one of n’s higher value
siblings first.

n

P

s1 s2 s3

6 2 7

 alpha = 7

9 8 3

beta = 9 8 3

30 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Alpha-Beta Algorithm

Evaluate(startNode):
 /* assume Max moves first */
 MaxEval(start, -infnty, +infnty)

MaxEval(node, alpha, beta):
 If terminal(node), return U(n)
 For each c in childlist(n)
 val ← MinEval(c, alpha, beta)
 alpha ← max(alpha, val)
 If alpha ≥ beta, return alpha
 Return alpha

MinEval(node, alpha, beta):
 If terminal(node), return U(n)
 For each c in childlist(n)
 val ← MaxEval(c, alpha, beta)
 beta ← min(beta, val)
 If alpha ≥ beta, return beta
 Return beta

Pseudo-code that associates
a value with each node.
Strategy extracted by
moving to Max node (if you
are player Max) at each
step.

16

31 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Rational Opponents
● This all assumes that your opponent is

rational
■ e.g., will choose moves that minimize your score

● What if your opponent doesn’t play
rationally?
■ will it affect quality of outcome?

32 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Rational Opponents
● Storing your strategy is a potential issue:
■ you must store “decisions” for each node you can

reach by playing optimally
■  if your opponent has unique rational choices, this

is a single branch through game tree
■  if there are “ties”, opponent could choose any one

of the “tied” moves: must store strategy for each
subtree

● What if your opponent doesn’t play
rationally? Will your stored strategy still
work?

17

33 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Practical Matters
● All “real” games are too large to enumerate

tree
■ e.g., chess branching factor is roughly 35
■ Depth 10 tree: 2,700,000,000,000,000 nodes
■ Even alpha-beta pruning won’t help here!

34 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Practical Matters
● We must limit depth of search tree

■ can’t expand all the way to terminal nodes
■ we must make heuristic estimates about the

values of the (nonterminal) states at the leaves
of the tree

■ evaluation function is an often used term
■ evaluation functions are often learned

● Depth-first expansion almost always used
for game trees because of sheer size of trees

18

35 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Heuristics

● Think of a few games and suggest some
heuristics for estimating the “goodness” of a
position
■ chess?
■ checkers?
■ your favorite video game?
■ “find the last parking spot”?

36 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Some Interesting Games

● Tesauro’s TD-Gammon
■ champion backgammon player which learned

evaluation function; stochastic component (dice)
● Checker’s (Samuel, 1950s; Chinook 1990s

Schaeffer)
● Chess (which you all know about)
● Bridge, Poker, etc.
● Check out Jonathan Schaeffer’s Web page:
■ www.cs.ualberta.ca/~games
■ they’ve studied lots of games (you can play too)

19

37 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

An Aside on Large Search Problems

● Issue: inability to expand tree to terminal nodes is
relevant even in standard search
■  often we can’t expect A* to reach a goal by expanding full

frontier
■  so we often limit our lookahead, and make moves before we

actually know the true path to the goal
■  sometimes called online or realtime search

● In this case, we use the heuristic function not just to
guide our search, but also to commits to moves we
actually make
■  in general, guarantees of optimality are lost, but we reduce

computational/memory expense dramatically

38 CSE 3402 Winter 2009 Fahiem Bacchus & Yves Lesperance

Realtime Search Graphically
1.  We run A* (or our favorite search algorithm)

until we are forced to make a move or run out
of memory. Note: no leaves are goals yet.

2. We use evaluation function f(n) to decide which
path looks best (let’s say it is the red one).

3. We take the first step along the best path
(red), by actually making that move.

4. We restart search at the node we reach by
making that move. (We may actually cache the
results of the relevant part of first search
tree if it’s hanging around, as it would with A*).

