
Query Folding

Information Integration Lecture 12

Michael Kassoff Spring 2003

Answering Queries Using Resources

book.title book.author book.year

books(b, t, y) :- b.title(b, t), b.author(b, JDS), b.year(b, y)

q(t, a) :- b.title(b, t), b.author(b, a)

materialized:

empty base relations:

Answering Queries Using Resources

book.title book.author book.year

books(b, t, y) :- b.title(b, t), b.author(b, JDS), b.year(b, y)

q(t, a) :- b.title(b, t), b.author(b, a)

materialized:

empty base relations:

Running Example

Book.Title

Book.Author

Book.Printing

Printing.Date

Pivot Schema

loc(b, t, a) :- b.title(b, t), b.author(b, a)

fan(b, d) :- b.author(b, JDS), b.printing(b, p), p.date(p, d)
Resources

Query Plans

Resources:

Query: q(t, a) :- b.title(b, t), b.author(b, a), b.printing(b, p), p.date(p, 1951)

loc(b, t, a) :- b.title(b, t), b.author(b, a)

fan(b, d) :- b.author(b, JDS), b.printing(b, p), p.date(p, d)

Query plan: q(t, a) :- loc(b, t, a), fan(b, 1951)

Query Folding

• Treat intensional predicates as being extensional

q(t, a) :- loc(b, t, a), fan(b, 1951)

loc(b, t, a) :- b.title(b, t), b.author(b, a)

fan(b, 1951) :- b.author(b, JDS), b.printing(b, p), p.date(p, 1951)

q(t, a) :- b.title(b,t), b.author(b, a), b.printing(b, p), p.date(p, 1951)

folded query:

Query Containment

• A query Q1 is contained in another query Q2

if Q1(D) Õ Q2(D) for all databases D

– Denoted Q1 Õ Q2

• Two queries are equivalent if Q1 Õ Q2 and

Q2 Õ Q1

– Denoted Q1 ≡ Q2

Maximal Containment

• Can’t always find an equivalent query plan

• We’ll settle for a maximally-contained plan

• A query plan Q* is maximally-contained in Q if:

– Q* Õ Q

– There is no rewriting Q’ such that Q* Õ Q’ Õ Q and Q’ is

not equivalent to Q*

• Maximal-containment is relative to the query

language allowed (i.e., conjunctive, recursive)

Answering Queries Using Resources

We will look at 2 methods:

Bucket Algorithm

Inverse Rules

The Bucket Algorithm

• High level idea: we need to extract tuples from the

resources to plug into the subgoals of our query Q

• Create a bucket for each subgoal of Q

• Fill the bucket with potential sources of tuples for

that subgoal

• Try all combinations of items in the buckets, and

choose the maximally-contained combination

In More Detail

• Create a bucket B for each query subgoal
S = s(t1,…,tn)

• For each resource v that contains a subgoal
R = s(u1,…,un), test if it is possible to get
compatible tuples from R

– Test “compatiblity” using unification

– If compatible, let s = mgu(S, R)

– Place head(v)s into B

Filling buckets

q(t, a) :- b.title(b, t), b.author(b, a), b.printing(b, p), p.date(p, 1951)

loc(b, t, a) :- b.title(b, t), b.author(b, a)

fan(b, d) :- b.author(b, JDS), b.printing(b, p), p.date(p, d)
Resources:

Query:

b.title

loc(b, t, a)

b.author

loc(b, t, a)

fan(b, d)

b.printing

fan(b, d)

p.date

fan(b, 1951)

Buckets:

Bucket Algorithm (cont’d)

• Consider all query plans built from resource

literals, where one literal is taken from each

bucket

• Test for containment of each generated query

– If not contained, add constraints to make it contained if

possible

• Choose the maximally-contained query plan

Example (cont’d)

Buckets:

q(t, a) :- b.title(b, t), b.author(b, a), b.printing(b, p), p.date(p, 1951)Query:

q(t, a) :- loc(b, t, a), loc(b, t, a), fan(b, d), fan(b, 1951)

q(t, a) :- loc(b, t, a), fan(b, d), fan(b, d), fan(b, 1951)
Candidate

Plans:

b.title

loc(b, t, a)

b.author

loc(b, t, a)

fan(b, d)

b.printing

fan(b, d)

p.date

fan(b, 1951)

q(t, a) :- loc(b, t, a), fan(b, 1951)

q(t, a) :- loc(b, t, a), fan(b, 1951)
Simplified

plans:

Bottom Line on the Bucket Algorithm

• Simple and intuitive

• Expensive to compute, in large part because
containment tests are expensive (NP-complete for
CQs, and worse if arithmetic predicates are
allowed)

• Must be computed from scratch for each query

• Works only for CQs (with arithmetic predicates)

The Inverse Rules Algorithm

• At a high level:

– Invert the resource definitions, and then use

these inverted rules to answer the original query

Inverse Rules

book.title book.author book.year

books(b, t, y) :- b.title(b, t), b.author(b, JDS), b.year(b, y)

q(t, a) :- b.title(b, t), b.author(b, a)

materialized:

empty base relations:

inverse rules

The completion of a predicate says “that’s all there is.”

Say we have a resource flies(X) with the following definition:

Predicate Completion

X = tom.c :- tom(X)

You

complete

me.

love(Tom)

flies(X) :- bird(X)

flies(X) :- plane(X)

Then the completion of flies(X) is:

bird(X) ⁄ plane(X) :- flies(X)

Inverse Rules

The completion of a resource definition puts the
resource predicate on the right and the base
predicates on the left!

amazon(t, a) :- b.title(b, t), b.author(b, a)

b.title(f(t,a), t), b.author(f(t,a), a) :- amazon(t, a)

Inverse rules:
 b.title(f(t,a), t) :- amazon(t, a)

 b.author(f(t,a), a) :- amazon(t, a)

Completion:

Definition:

Application of Inverse Rules

 b.title(f(t,a), t) :- amazon(t, a)

b.author(f(t,a), a) :- amazon(t, a)

{b.title(f(“MD”, HM), “MD”), b.author(f(“MD”, HM), HM),

 b.title(f(“CITR”, JDS), “CITR”), b.author(f(“CITR”, JDS), JDS)}

{amazon(“MD”, HM), amazon(“CITR”, JDS)}

Inverse rules:

Application:

Resource:

Inverse Rules Algorithm

• If resource definitions are conjunctive, we
can simply:

1) In a preprocessing step, compute the
inverse rules of our resource definitions

2) Given a query Q on the pivot schema, the
query plan is simply Q together with the
inverse rules

– Q can even be a recursive query

Inverse Rules Algorithm (step 1)

Resources:
loc(b, t, a) :- b.title(b, t), b.author(b, a)

fan(b, d) :- b.author(b, JDS), b.printing(b, p), p.date(p, d)

 b.title(b, t) :- loc(b, t, a)

 b.author(b, a) :- loc(b, t, a)

 b.author(b, JDS) :- fan(b, d)

b.printing(b, f(b,d)) :- fan(b, d)

 p.date(f(b,d), d) :- fan(b, d)

Inverse rules:

Inverse Rules Algorithm (step 2)

Query: q(t, a) :- b.title(b, t), b.author(b, a), b.printing(b, p), p.date(p, 1951)

Query

plan:

q(t, a) :- b.title(b, t), b.author(b, a), b.printing(b, p), p.date(p, 1951)

 b.title(b, t) :- loc(b, t, a)

 b.author(b, a) :- loc(b, t, a)

 b.author(b, JDS) :- fan(b, d)

b.printing(b, f(b,d)) :- fan(b, d)

 p.date(f(b,d), d) :- fan(b, d)

Inverse Rules Algorithm (step 3)

Query

plan:

q(t, a) :- b.title(b, t), b.author(b, a), b.printing(b, p), p.date(p, 1951)

 b.title(b, t) :- loc(b, t, a)

 b.author(b, a) :- loc(b, t, a)

 b.author(b, JDS) :- fan(b, d)

b.printing(b, f(b,d)) :- fan(b, d)

 p.date(f(b,d), d) :- fan(b, d)

Resources:
{loc(523-3, “CITR”, JDS), loc(322-8, “MD”, HM)}

{fan(523-3, 1951), fan(523-3, 1979)}

Answer: {q(“CITR”, JDS)}

Nice properties

• Despite the inclusion of function constants,

the application of the inverse rules + query

will always terminate. (Why?)

• Inverse rules always produces a maximally-

contained rewriting

3-Colorability Example

rgb(X) :- color(X, red)

rgb(X) :- color(X, green)

rgb(X) :- color(X, blue)

e(X, Y) :- edge(X, Y)

Resources:

q(‘yes’) :- edge(X, Y), color(X, Z), color(Y, Z)Query:

“Are there two adjacent nodes with the same color?”

(Returns ‘yes’ if the graph is not 3-colorable)

Plan Using Disjunction

q(‘yes’) :- edge(X, Y), color(X, Z), color(Y, Z)

color(X, red) ⁄ color(X, greeen) ⁄ color(X, blue) :- rgb(X)

 edge(X, Y) :- e(X, Y)

rgb(X) :- color(X, red)

rgb(X) :- color(X, green)

rgb(X) :- color(X, blue)

e(X, Y) :- edge(X, Y)

Resources:

Query plan:

Need for Recursive Query Plan

• If our sources are defined using union,

sometimes the maximally contained query

plan is recursive, even if the original query

wasn’t recursive

• In this case, we need to also include some

contrapositives of rules

Recursive Rewritings: Example

 s1(X,Y) :- virgin(X, Y), major(X), major(Y)

 s2(X,Y) :- united(X, Y), major(X), major(Y)

 s3(X,Y) :- virgin(X, Y)

 s3(X,Y) :- united(X, Y)

Resources:

query() :- virgin(X, Y), united(Y, Z)Query:

Example (cont’d)

query() :- virgin(X, Y), united(Y, Z)

ÿvirgin(X, Y) :- ÿquery(), united(Y, Z)

ÿunited(Y, Z) :- ÿquery(), virgin(X, Y)

virgin(X, Y) :- s1(X, Y)

virgin(X, Y) :- s3(X, Y), ÿunited(X, Y)

united(X, Y) :- s2(X, Y)

united(X, Y) :- s3(X, Y), ÿvirgin(X, Y)

Query plan:

Example (cont’d)

 query() :- virgin(X, Y), united(Y, Z)

virgin(X,Y) :- s1(X, Y)

virgin(X,Y) :- virgin(X’, X), s3(X, Y)

united(X,Y) :- s2(X, Y)

united(X,Y) :- s3(X, Y), united(Y, Y’)

Query plan

(simplified):

The plan is recursive!

+s of Inverse Rules Algorithm

• Demonstrates the power of Logic

– What could be simpler? Just invert the rules and drop

in any query you like

– Works even for recursive queries and for resources

defined using union, which the Bucket Method does not

handle

– In conjunctive case, once the inverse rules are

computed, we can use them to make a query plan in

constant time!

