
August 1999 DEXA’99—Godfrey & Gryz p. 0

Answering Queries
by Semantic Caches

Parke Godfrey Jarek Gryz

Department of Computer Science

York University

Toronto, Ontario, Canada

{godfrey, jarek}@cs.yorku.ca

August 1999

August 1999 DEXA’99—Godfrey & Gryz p. 1

What is Semantic Query Caching?

Semantic query caching (SQC): Use the results of old queries

to answer new queries.

A semantic query cache (SQC) is a

• a local materialization of a query, annotated with

• a query expression.

Other types of caching used in databases:

• tuple-based

• page-based

It is unclear how tuple-based or page-based could be extended for

heterogeneous database environments.

Semantic query caches also offer advantages. They

• exploit semantic locality.

(Dar, Franklin, Jonsson, & Srivastava [VLDB’96])

• offer greater flexibility.

– Caches can be combined to answer queries.

– Can determine when caches completely answer query.

• are easy to capture and store.

August 1999 DEXA’99—Godfrey & Gryz p. 2

Applications of Semantic Query Caching

What can semantic query caching buy us, especially in a

heterogeneous, mediated environment?

• Query optimization

– Improvement in overall query response time

(Traditional optimization)

– Saving money

– Optimization of queries with few answers

• Data Security

• Fault tolerance

• Approximate answering (aggregates)

(Hellerstein, Haas, & Wang [SIGMOD’97])

• Better user interaction

– Answer set pipelining

– Indirect answering

– Limiting the size of the answer set

August 1999 DEXA’99—Godfrey & Gryz p. 3

Our Goals

Seek to define a general framework in logic for semantic query

caching, and the use of semantic caches. Framework should be

• Relationally Complete

– All the relational algebra—including join and union—can

be used across the caches to answer queries.

• Flexible

– Query may be only partially answerable via cache. In this

case, the query should be answered in part via cache and the

rest via evaluation.

• Parameterizable

– SQC usage can be parameterized to be optimized for

different purposes. For example, query optimization, and

answer pipelining.

Problems at hand: (Outline)

1. Deciding when answers are in cache.

2. Extracting answers from cache.

3. Accessing semantic overlap / semantic independence.

4. Evaluating semantic remainders.

August 1999 DEXA’99—Godfrey & Gryz p. 4

Relationships between
Caches and Queries

QueryCache

Query

Case 1

Cache

Case 2

Cache

Query

Case 3

Cache

Query

Case 5

Cache

Query

Case 6

Cache

Query

Case 4

Horizontal = rows / tuples

Vertical = attributes

Not interested in the actual tuples in common, but the tuples that

must be in common.

August 1999 DEXA’99—Godfrey & Gryz p. 5

Notation (Datalog)

Conjunctive Queries

Q: ← employee (N, S, A), benefits (S, P).

Views / Rules (Intensional Predicates)

employee (N, S, A) ← payroll (S,), personnel (S, N, A).

employee (N, S, A) ← contractor (S, N, A, C),

contract# (C, active).

IDB & EDB

IDB: view definitions / rules

EDB: tables / facts

Cache Rules and Predicates

c i (N) ← employee (N, S, A), benefits (S, P).

Cache Expression (E)

Any conjunctive view (SPJ) written only with cache predicates.

August 1999 DEXA’99—Godfrey & Gryz p. 6

Containment
When the query is contained by the caches

QueryCache

Query

Case 1

Cache

Case 2

Cache

Query

Case 3

Cache

Query

Case 5

Cache

Query

Case 6

Cache

Query

Case 4

Questions

1. When is the query contained by the caches?

2. When can one answer, or partially answer, the query by the

caches?

IDB |= ∀. Q → (E1 ∨ . . . ∨ En)

August 1999 DEXA’99—Godfrey & Gryz p. 7

Containment

Example

Q: ← employee (N,S,A), benefits (S,P).

C1: c 1 (N) ← employee (N,S,A), A <50.

C2: c 2 (N) ← employee (N,S,A), A >20.

E1: c 1 (N)

E2: c 2 (N)

IDB |= ∀. Q → (E1 ∨ E2)

However, one cannot extract the answers to Q from C1 and C2.

August 1999 DEXA’99—Godfrey & Gryz p. 8

Containment

When the caches (partially) answer the query

IDB |= ∀. E → Q

Equivalence

IDB |= ∀. Q → (E1 ∨ . . . ∨ En)

and, for each Ei,

IDB |= ∀. Ei → Q

The only known way to show equivalence is to show containment in

both directions.

• There are cases when all answers are contained, but cannot be

retrieved.

• If one can only answer part of the query by the caches, how

does one (efficiently) answer the rest?

August 1999 DEXA’99—Godfrey & Gryz p. 9

Abbreviated Containment

QueryCache

Query

Case 1

Cache

Case 2

Cache

Query

Case 3

Cache

Query

Case 5

Cache

Query

Case 6

Cache

Query

Case 4

Abbreviated containment: Not all the attributes of the query

can be retrieved, but a projection of the query is contained by the

caches.

August 1999 DEXA’99—Godfrey & Gryz p. 10

Semantic Overlap

Or how containment is not the whole story

QueryCache

Query

Case 1

Cache

Case 2

Cache

Query

Case 3

Cache

Query

Case 5

Cache

Query

Case 6

Cache

Query

Case 4

Q:

C:

employee (X) ←

taxed (X) ←

payroll (X),

payroll (X),

position (X).

national (X).

Trickier to capture than one might expect.

a (X) ←

b (X) ←

c (X),

c (X),

X > 5.

X ≤ 5.

August 1999 DEXA’99—Godfrey & Gryz p. 11

Semantic Overlap

Overlap Witness

First, there must exist a conjunctive query formulaW , called an

overlap witness, such that

|= ∀. (Q →W) ∧ (E → W)

For example,

|= ∀X. payroll (X) ∧ position (X)→ payroll (X)

|= ∀X. payroll (X) ∧ national (X)→ payroll (X)

This means that there is a shared resource.

Problems:

• True for W works.

• Does not guarantee that Q and E are semantically connected.

August 1999 DEXA’99—Godfrey & Gryz p. 12

Semantic Overlap

Overlap Formula

Second, there must exist a conjunctive query formula F , called the

overlap formula, such that

|= ∀. (F → Q) ∧ (F → E)

For example,

|= ∀X. payroll (X) ∧ position (X) ∧ national (X)→

payroll (X) ∧ position (X)

|= ∀X. payroll (X) ∧ position (X) ∧ national (X)→

payroll (X) ∧ national (X)

Problems:

• False for F works.

Note that Q∧ E always works.

August 1999 DEXA’99—Godfrey & Gryz p. 13

Semantic Overlap

Both overlap witness and formula

If there is a non-tautological overlap witness and Q∧ E is not a

contradiction (so there exists a non-contradictory overlap formula),

then Q and E extensionally overlap.

Interested in most general overlap formulas. F is most general if

there exists no G such that

|= ∀. (F → G) but 6|= ∀. (G → F)

Intensional Overlap

Overlap with respect to IDB: There exist unfoldings UQ and UE of

Q and E , respectively, such that UQ and UE extensionally overlap.

August 1999 DEXA’99—Godfrey & Gryz p. 14

Semantic Independence

QueryCache

Query

Case 1

Cache

Case 2

Cache

Query

Case 3

Cache

Query

Case 5

Cache

Query

Case 6

Cache

Query

Case 4

Only once we have defined semantic overlap can we then define

semantic independence.

Q and E are semantically independent iff they do not

intensionally overlap in any way.

August 1999 DEXA’99—Godfrey & Gryz p. 15

Semantic Remainder

Q: ← employee (N,S,A).

C: c (N) ← employee (N,S,A), benefits (S,).

R: benefits (S,B) ← position (S,P), package (P,B).

One can partially answer Q by the cache C. Next, how to find the

remaining answers?

Let [[Q]] denote the answer set of Q.

Let Q\E be called a discounted query: It at least evaluates to those

answers of Q that cannot be retrieved via E .

Two degenerate ways to define Q\E are

1. Q\E ≡ Q ([[Q\E]] = [[Q]])

2. Q\E ≡ Q ∧ not E ([[Q\E]] = [[Q]]− [[E]])

August 1999 DEXA’99—Godfrey & Gryz p. 16

Properties for Discounted Queries

• soundness

[[Q\E]] ⊆ [[Q]]

• completeness

[[Q− E]] ⊆ [[Q\E]]

• independence

Q\E and E should be semantically independent.

• uniformity

[[Q\E]]− [[E\Q]] = [[Q]]− [[E]]

• cost effectiveness

Evaluating Q\E and E should cost less than evaluating Q.

August 1999 DEXA’99—Godfrey & Gryz p. 17

Related Work

• Semantic Query Caching

– Adalı, Candan, Papakonst., & Subrahmanian [SIGMOD’96]

– Dar, Franklin, Jonsson, Srivastava, & Tan [VLDB’96]

– Godfrey & Gryz [KRDB’97]

– Godfrey & Gryz [ICDT’99]

– Keller & Basu [VLDB Journal 1996]

• Answering Queries using Views

(Logical Views, Mat. Views, & Query Folding)

– Chen & Roussopoulos [EDBT’94]

– Gupta, Mumick, & Ross [SIGMOD’95]

– Levy, Mendelzon, Sagiv, Srivastava [PODS’95]

– Qian [ICDE’96]

– Shmueli [PODS’87]

– Ullman [ICDT’97]

• Description Logics

– Goñi, Bermúdez, Blanco, & Illarramendi [KRDB’96]

– Levy & Rousset [KRDB’96]

• Semantic Query Optimization

– Godfrey, Gryz, & Minker [ISMIS’96]

– Godfrey & Gryz [DDLP’96]

– Godfrey & Gryz [DOOD’97]

August 1999 DEXA’99—Godfrey & Gryz p. 18

Future Work

– formalization

• Formalize notion, or notions, of Q\E .

– algorithms

• Reasoning over conjunctive query containment and Datalog

containment is computationally hard.

• What are good (possibly incomplete) tractable algorithms

for important sub-classes of containment and overlap?

– optimization

◦ What would cost models for SQC be?

• What are good evaluation strategies for discounted queries?

– cache currency

◦ Can caches be kept “reasonably” current inexpensively?

– cache maintenance

◦ What would be a reasonable cache maintenance strategy?

◦ When should caches be combined / split?

