AVL Trees
Dynamic Tree Balancing
Problems with BST

- With random insertions and deletions BST has $\Theta(\log N)$ times for search, insert and remove
- But worst case behaviour is $\Theta(N)$
- Problem is that BST’s can become unbalanced
- We need a **rebalance operation** on a BST to restore the balance property and regain $\Theta(\log N)$
- Rebalancing should be cheap enough that we could do it **dynamically** on every insert and remove
 - Preference is to have $\Theta(1)$ rebalance time
AVL Balance Definition

• A good balance conditions ensures the height of a tree with N nodes is $\Theta(\log N)$

 » That gives $\Theta(\log N)$ performance

• The following balance definition is used

 » The empty tree is balanced

 » For every node in a non-empty tree

 $|\text{height (left_sub_tree)} - \text{height (right_sub_tree)}| \leq 1$
Rebalancing

• Restructure the tree by moving the nodes around while preserving the order property

• The operation is called a **rotation**

 » Make use of the property that a node has one parent and two direct descendents
Single Rotations

LL rotation

RR rotation

Keys in A < K2
K2 < Keys in B < K1
K1 < Keys in C

Relationship to parent does not change

© Gunnar Gotshalks
Single LL Rotation Pseudocode

// Return pointer to root after rotation

rotate_LL (oldRoot : Node) : Node is
 Result ← oldRoot . left
 oldRoot . left ← Result . right
 Result . right ← oldRoot
 adjustHeight(old_root)
 adjustHeight(old_root.left)
 adjustHeight(Result)
end

// Example use of rotate_LL

parent . left ← rotate_LL (parent . left)
parent . right ← rotate_LL (parent . right)

Exercise
write rotate_RR
AdjustHeight Pseudocode

// Assume that every node contains a height attribute

adjustHeight (root : Node) is
 if root ≠ null then
 root . height ← 1 + max (height (root . left) , height (root . right))
 end
end
Single Rotations & Height

LL rotation

RR rotation

h(K1) = 1 + max (h(K2), h(C))
h(K2) = 1 + max (h(A), h(B))

If h(A) > h(B) & h(B) ≥ h(C) then rotate_LL reduces the height of the root

h(K2) = 1 + max (h(K1), h(A))
h(K1) = 1 + max (h(B), h(C))

If h(C) > h(B) & h(B) ≥ h(A) then rotate_RR reduces the height of the root
Single Rotations & Height – 2

\[h(K1) = 1 + \max \left(h(K2), h(C) \right) \]
\[h(K2) = 1 + \max \left(h(A), h(B) \right) \]

if \(h(A) > h(B) \land h(B) \geq h(C) \)
then \textit{rotate_LL} reduces the height of the root

Proof – before rotation

\[h(K2) = 1 + h(A) \]
\[-- h(A) > h(B) \]
\[h(K1) = 1 + h(K2) \]
\[-- h(K2) > h(B) \geq h(C) \]
\[h(K1) = 2 + h(A) \]

Before rotation \(h(\text{root}) = 2 + h(A) \)

After rotation \(h(\text{root}) = 1 + h(A) \)

Height of root has been reduced
if \(h(A) > h(B) \land h(B) \geq h(C) \)
then rotate_LL reduces the height of the root

Proof (?) by diagram
Double Rotation – LR

Keys in A < K2
K2 < Keys in B1 < K3
K3 < Keys in B2 < K1
K1 < Keys in C

Relationship to parent does not change
Double Rotation – LR – Height

If \(h(K3) > h(A) \land h(A) \geq h(C) \) then rotate_LR reduces the height of root
Double Rotation – RL

Keys in A < K2
K2 < Keys in B1 < K3
K3 < Keys in B2 < K1
K1 < Keys in C

Relationship to parent does not change
Double Rotation – RL – Height

If \(h(K3) > h(C) \) \(\land \) \(h(C) \geq h(A) \)
then rotate_RL reduces the height of root
// Return pointer to root after rotation

rotate_RL (oldRoot : Node) : Node is
 rightChild ← oldRoot . right ; Result ← rightChild . left
 oldRoot . right ← Result . left ; rightChild . left ← Result . right
 Result . left ← oldRoot ; Result . right ← rightChild

adjustHeight (oldRoot)
adjustHeight (rightChild)
adjustHeight (Result)

end

// Example use of rotate_RL

parent . left ← rotate_RL (parent . left)
parent . right ← rotate_RL (parent . right)

Exercise
write rotate_LR
// Insert will do rotations, which changes the root of
// sub-trees. As a consequence, the recursive insert must
// return the root of the resulting sub-tree.

insert (key : KeyType , data : ObjectType) is
 newNode ← new Node (key , data)
 root ← insertRec (root , newNode)
 root ← rebalance (root) // Insertion may change
 adjustHeight (root) // height, which may
 // cause imbalance
end

Only one rebalance will occur but we do not know where
InsertRec Pseudocode

// Insert may do rotations, which changes the root of
// sub-trees. As a consequence, the recursive insert must
// return the root of the resulting sub-tree.

// Invariant – The tree rooted at root is balanced

insertRec (root : Node , newNode : Node) : Node is
 if root = Void then Result ← newNode
 else if root . key > newNode . key
 then root . left ← insertRec (root . left , newNode)
 else root . right ← insertRec (root . right , newNode)
 fi
 Result ← rebalance (root) ; adjustHeight (Result)
 fi
end
// Assume that every node contains a height attribute

// Different definition for height for AVL trees.
// Height of leaf is 1 (Figure 10.10 p435) not 0 (page 273).
// By implication height of empty tree is 0 (see slides
// Tree Algorithms–11..15 on binary tree height).

height (root : Node) : Integer is
 if node = Void then Result ← 0
 else Result ← node . Height
 fi
 return
end
Rebalance Pseudocode

- Define 6 variables that have the height of the sub-trees of interest for rotations
 - If any of the pointers are void, height 0 is returned

![Diagram of AVL tree with variable definitions for LL and LR rotations.

- h_AL = height of subtree A
- h_BL = height of subtree B
- h_CL = height of subtree C

© Gunnar Gotshalks
Rebalance Pseudocode – 2

- Have the symmetric cases for the other 3 height variables
rebalance (root : Node) : Node is
 h_AL ← heightLL (root) ; h_AR ← heightRR (root)
 h_BL ← heightLR (root) ; h_BR ← heightRL (root)
 h_CL ← height(root . right) ; h_CR ← height (root . left)

 if h_AL = h_BL ∧ h_BL ≥ h_CL then Result ← rotate_LL (root)
 elseif h_AR = h_BR ∧ h_BR ≥ h_CR then Result ← rotate_RR (root)
 elseif h_BL = h_AL ∧ h_AL ≥ h_CL then Result ← rotate_LR (root)
 elseif h_BR = h_AR ∧ h_AR ≥ h_CR then Result ← rotate_RL (root)
 else Result ← root
fi
end

This follows the mathematical development in slides 8, 12, 14 and works correctly for insertion where the objective is to reduce the height of a subtree. See slides 29..32 for problems with remove.
Remove Difficulties

• Remove has to do two things
 » **Return the entry corresponding to the key**
 » **Rebalance the tree**
 > Means adjusting the pointers
 > Without a parent pointer, the path from the root to the node is a singly linked list
 > Need to keep track of the parent node of the root of the sub-tree to rebalance to adjust the pointer to the new sub-tree
 > Consequence is every step we have to look one level deeper than BST remove algorithm

• Rebalancing may occur at all levels
Remove Pseudocode

remove (key : KeyType) : EntryType is
 if root = Void then Result ← Void // Entry not in tree
 elseif root . key = key then // Root is a special case
 Result ← root . entry
 root ← removeNode (root)
 else Result ← removeRec (root , key) // Try sub-trees
 fi

 // The following routines need look ahead. They are the
 // main change from BST remove.

 adjustHeight (root)
 root ← rebalance (root)
end
RemoveRec Pseudocode

// Require root ≠ null ∧ root .key ≠ key
// entry ∈ tree → entry ∈ root
// balanced (tree (root))
// Ensure entry ∈ tree → Result = entry
// entry ∉ tree → Result = Void
// tree (root) may be unbalanced

removeRec (root : Node , key : KeyType) : EntryType is
if root . key > key then
 // Remove from the left sub-tree
else
 // Remove from the right sub-tree
fi
return
end
// Remove from the left sub-tree

if root . left = Void then Result ← Void
elseif root . left . key = key then
 Result ← root . left . entry
 root . left ← removeNode (root . left)
else
 Result ← removeRec (root . left , key)
 adjustHeight(root . left)
 root . left ← rebalance (root . left)
fi
end
// Remove from the right sub-tree

if root . right = Void then Result ← Void
elseif root . right . key = key then
 Result ← root . right . entry
 root . right ← removeNode (root . right)
else
 Result ← removeRec (root . right, key)
 adjustHeight (root . right)
 root . right ← rebalance (root . right)
fi
end
// Require root ≠ Void
// Ensure Result is a balanced tree with root removed
Result = replacement node

removeNode (root : Node) : Node
 if root . left = Void then Result ← root . right
 elseif root . right = Void then Result ← root . Left
 else child ← root . left
 if child . right = Void then
 root . entry ← child . entry ; root . left ← child . left
 else root . left ←
 swap_and_remove_left_neighbour (root , child)
 fi
 adjustHeight (root)
 Result ← rebalance (root)
 fi
end
Swap and Remove Left Neighbour

// Require child . right ≠ Void
// Ensure Result is a balanced tree with node removed
 Result = replacement node

swap_and_remove_left_neighbour (parent , child : Node) : Node

 if child . right . right ≠ Void then
 child . right ←
 swap_and_remove_left_neighbour (parent , child . right)
 else
 parent . entry ← child . right . entry
 child . right ← child . right . left
 fi

 adjustHeight (parent)
 Result ← rebalance (parent)

end
Problem with Rebalance Pseudocode

- The pseudocode for rebalance in slide 21 is works correctly for inserting a node into an AVL tree.

 » But the pseudocode fails for the following remove example

![AVL tree before and after removal of node 21]
Problem with Rebalance Pseudocode

- What is the problem?
 - The case cannot occur on insertion – inserting 17 or 19 invokes a rebalance
 - Need to rebalance but the height will not change

Remove 21
Correct removal with rebalance is the following:

1. Remove 21
2. Rotate LR
3. Remove 21
4. Rotate LL
Rebalance Pseudocode Revised – 3

- Correct rebalance needs to have the following changes

 » Does the height of left and right sub-trees differ by more than 1?
 > If so, then continue rebalance.

 » The condition \(h(A) > h(B) \) does not hold (slide 8)
 > Need to change to \(h(A) \geq h(B) \)
 – If \(h(A) = h(B) \) then either rotateLL or rotateLR will restore balance but not change the height
Rebalance Pseudocode for Remove

rebalance (root : Node) : Node is
 h_AL ← heightLL (root) ; h_AR ← heightRR (root)
 h_BL ← heightLR (root) ; h_BR ← heightRL (root)
 h_CL ← height (root . right) ; h_CR ← height (root . left)

 if h_AL ≥ h_BL ∧ h_BL ≥ h_CL then Result ← rotate_LL (root)
 elseif h_AR ≥ h_BR ∧ h_BR ≥ h_CR then Result ← rotate_RR (root)
 elseif h_BL ≥ h_AL ∧ h_AL ≥ h_CL then Result ← rotate_LR (root)
 elseif h_BR ≥ h_AR ∧ h_AR ≥ h_CR then Result ← rotate_RL (root)
 else Result ← root
 fi
end

Note the ≥ instead of = to handle cases for remove.