Hash Tables
Definition

• A hash table has the following components
 » An array – called a table – of size N
 » A mathematical function – called a hash function – that maps keys to valid array indices

\[
\text{hash_function}: \text{key} \rightarrow 0 \ldots N - 1
\]

• Table entries are stored and retrieved by applying the hash function to the entry key to get the index used to probe the table.
Hash Function Basic Properties

• A hash function consists of two parts

 » **Hash code function**
 > Maps the key into an interval that at least includes the interval \([0, N - 1]\)
 > \(\text{hash	extunderscore code (key)} \rightarrow \text{integer} \)

 » **Compression function**
 > Maps the integer from the hash code function to the integer interval \([0, N - 1]\)
 > \(\text{compress (integer)} \rightarrow 0 .. N - 1 \)
 > **Backward function composition**
 > \(\text{compress o hash	extunderscore code : key} \rightarrow 0 .. N - 1 \)
 > **Program function composition**
 > \(\text{compress (hash	extunderscore code (key))} \rightarrow 0 .. N - 1 \)
Hash Function Basic Properties – 2

• A good hash function will distribute the expected keys uniformly over the array
 » The index probability distribution should follow a uniform distribution
 » Any index is equally likely as any other index

• In Java the Object class has a default hashCode() method that returns a 32 bit integer.
 » In general this is not a good method to use as frequently it is just the address of the object in memory.
 > It is implementation dependent and cannot be relied on
 > It does not do a good job for strings, which are most frequently used as keys
Polynomial Hash Function

- Good to use for strings
 - Have a sequence of items (characters for strings) that have a hash code (ASCII representation for characters)

$$\text{string} = \langle c_1, c_2, \ldots, c_k \rangle$$

- Combine the sequence of hash codes using Horner’s rule for evaluating polynomials, where m is often a prime number

$$\text{hash_code} = c_k + m(c_{k-1} + m(c_{k-2} + \ldots + m(c_2 + mc_1)\ldots)))$$
Compression Functions

- The simplest compression function is to use the modulus function
 \[\text{Hash_Code mod Table_Size} \]

- Sometimes the MAD (Multiple Add Divide) is used
 \[(A*\text{hash_code} + B) \text{ mod Table_Size} \]
 > Where
 \[A \text{ mod Table_Size} \neq 0 \]
 \[B \geq 0 \]
 Table_Size is a prime number
Collisions

- The key space is very, very, very much larger than the table size
 - Therefore many keys map to the same table index
 - These keys are said to collide
- As a consequence, we need a collision resolution method
Separate Chaining

- Each entry in the array contains a list of the keys that hash to that bucket.
 - \(O \left(\left\lfloor \frac{\text{number_of_entries}}{\text{Table_size}} \right\rfloor \right) \)
 - It is \(O(1) \) provided \(\text{number_of_entries} \) is \(O(\text{Table_Size}) \)
 - Keep load factor below 90%, 75% is used in Java API
Open Addressing

• When collisions occur select another location in the array to store the item.

• The following are common variations
 » Linear probing
 » Quadratic probing
 » Double hashing
Linear Probing

• Initial location is

\[i \leftarrow \text{hash_code(key)} \]

• For collision resolution iterate over \(k = 0, 1, 2 \ldots \) until an empty bucket is found

\[(i + k) \mod \text{Table_Size} \]

> Given the following table

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

> Suppose \(\text{hash_code}(X) = 3, 4 \) or 5, then \(X \) is stored in location 6

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
asd& & & & & & & &x&
\end{array}
\]
Linear Probing – Problem

- If the table is relatively empty and keys hash with equal probability for any bucket then insert and search is $O(1)$

- As the table fills, collision chains build up degrading performance

- As the table becomes over 80% separate chains start combining creating every long chains at an ever increasing rate, degrading performance even more.

 » For many keys performance can approach $O(N)$.

- Heuristic

 » have tables about 50% to 80% full to make good use of space and keep performance close to $O(1)$.
Quadratic Probing

- Initial location is
 \[i \leftarrow \text{hash_code(key)} \]

- For collision resolution iterate over \(k = 0, 1, 2 \ldots \) until an empty bucket is found
 \[(i + k^2) \mod \text{Table_Size} \]
Quadratic Probing Problem

- Secondary clustering
 - Set of filled buckets “bounces” around in a fixed pattern
 - May not find an empty bucket if the table is more than 50% full.
Double Hashing

• Initial location is
 \[i \leftarrow \text{hash_code(key)} \]

• Collision resolution iterate over \(k = 0, 1, 2 \ldots \) until an empty bucket is found
 \[(i + k*\text{hash2(key)}) \mod \text{Table_Size} \]

• Hash2 cannot evaluate to zero
 \[\text{If key is an integer, a common choice is} \]
 \[> \text{hash2(key)} = \text{prime} - (\text{key mod prime}) \]
 \[> \text{prime} < \text{Table_Size} \]
Double Hashing Problem

- Have to carefully analyze hash function to minimize clustering for the expected key distribution
Open Addressing vs Chaining

- Open addressing saves space
 - no need for pointers

- Open addressing could be faster
 - no need to create list nodes and link them

- But chaining is found to be competitive with open addressing depending upon the load factor in the table array

- Chaining tends to be used more unless
 - space is at a premium
 - and clustering can be minimized with open addressing
Open addressing entry removal

• Cannot just remove a key and set the cell to empty
 » Could be part of a chain for a different key

• Only reasonable algorithm is have cells in three states
 » Empty
 » Deleted
 » Full
 > Cells marked as deleted are considered to part of collision chains
 > Cells marked as deleted are eligible to be filled with new entries
Load Factor Too Large

- As tables become too full they are resized
 - Typically double the size of the array
 - Rehash all the entries in the old table into the new table
 > \(O(\text{Number}_\text{of}_\text{table}_\text{entries}) \)

- When cost is amortized over all insert operations we can maintain \(O(1) \) performance