
Maps–1© Gunnar Gotshalks

Hash Tables

Maps–2© Gunnar Gotshalks

Definition

• A hash table has the following components
» An array – called a table – of size N
» A mathematical function – called a hash function – that

maps keys to valid array indices
hash_function: key → 0 .. N – 1

• Table entries are stored and retrieved by applying the
hash function to the entry key to get the index used to
probe the table.

Maps–3© Gunnar Gotshalks

Hash Function Basic Properties

• A hash function consists of two parts
» Hash code function

> Maps the key into an interval that at least includes the
interval [0 , N – 1]

hash_code (key) → integer

» Compression function
> Maps the integer from the hash code function to the

integer interval [0 , N – 1]
compress (integer) → 0 .. N – 1

> Backward function composition
compress ο hash_code : key → 0 .. N – 1

> Program function composition
compress (hash_code (key)) → 0 .. N – 1

Maps–4© Gunnar Gotshalks

Hash Function Basic Properties – 2

• A good hash function will distribute the expected keys
uniformly over the array
» The index probability distribution should follow a

uniform distribution
» Any index is equally likely as any other index

• In Java the Object class has a default hashCode() method
that returns a 32 bit integer.
» In general this is not a good method to use as frequently

it is just the address of the object in memory.
> It is implementation dependent and cannot be relied

on
> It does not do a good job for strings, which are most

frequently used as keys

Maps–5© Gunnar Gotshalks

Polynomial Hash Function

• Good to use for strings
» Have a sequence of items (characters for strings) that have a hash

code (ASCII representation for characters)

» Combine the sequence of hash codes using Horner’s rule for
evaluating polynomials, where m is often a prime number

!

hash _code = ck + m(ck"1 + m(ck"2 + ...+ m(c2 + mc1)...)))

!

string =< c1,c2,...,ck >

Maps–6© Gunnar Gotshalks

Compression Functions

• The simplest compression function is to use the modulus
function

Hash_Code mod Table_Size

• Sometimes the MAD (Multiple Add Divide) is used
» (A*hash_code + B) mod Table_Size

> Where
A mod Table_Size ≠ 0
B ≥ 0
Table_Size is a prime number

Maps–7© Gunnar Gotshalks

Collisions

• The key space is very, very, very much larger than the
table size
» Therefore many keys map to the same table index
» These keys are said to collide

• As a consequence, we need a collision resolution method

Maps–8© Gunnar Gotshalks

Separate Chaining

• Each entry in the array contains a list of the keys that hash
to that bucket.
» O (number_of_entries / Table_size)
» It is O(1) provided number_of_entries is O(Table_Size)
» Keep load factor below 90%, 75% is used in Java API

Maps–9© Gunnar Gotshalks

Open Addressing

• When collisions occur select another location in the array
to store the item.

• The following are common variations
» Linear probing
» Quadratic probing
» Double hashing

Maps–10© Gunnar Gotshalks

Linear Probing

• Initial location is
i ← hash_code(key)

• For collision resolution iterate over k = 0, 1, 2 … until an
empty bucket is found
» (i + k) mod Table_Size

> Given the following table

> Suppose hash_code(X) = 3, 4 or 5, then X is stored
in location 6

Maps–11© Gunnar Gotshalks

Linear Probing – Problem

• If the table is relatively empty and keys hash with equal
probability for any bucket then insert and search is O(1)

• As the table fills, collision chains build up degrading
performance

• As the table becomes over 80% separate chains start
combining creating every long chains at an ever
increasing rate, degrading performance even more.
» For many keys performance can approach O(N).

• Heuristic
» have tables about 50% to 80% full to make good use of

space and keep performance close to O(1).

Maps–12© Gunnar Gotshalks

Quadratic Probing

• Initial location is
i ← hash_code(key)

• For collision resolution iterate over k = 0, 1, 2 … until an
empty bucket is found
» (i + k2) mod Table_Size

Maps–13© Gunnar Gotshalks

Quadratic Probing Problem

• Secondary clustering
» Set of filled buckets “bounces” around in a fixed pattern
» May not find an empty bucket if the table is more than

50% full.

Maps–14© Gunnar Gotshalks

Double Hashing

• Initial location is
i ← hash_code(key)

• Collision resolution iterate over k = 0, 1, 2 … until an
empty bucket is found
» (i + k*hash2(key)) mod Table_Size

• Hash2 cannot evaluate to zero
» If key is an integer, a common choice is

> hash2(key) = prime – (key mod prime)
– prime < Table_Size

Maps–15© Gunnar Gotshalks

Double Hashing Problem

• Have to carefully analyze hash function to minimize
clustering for the expected key distribution

Maps–16© Gunnar Gotshalks

Open Addressing vs Chaining

• Open addressing saves space
» no need for pointers

• Open addressing could be faster
» no need to create list nodes and link them

• But chaining is found to be competative with open
addressing depending upon the load factor in the table
array

• Chaining tends to be used more unless
» space is at a premium
» and clustering can be minimized with open addressing

Maps–17© Gunnar Gotshalks

Open addressing entry removal

• Cannot just remove a key and set the cell to empty
» Could be part of a chain for a different key

• Only reasonable algorithm is have cells in three states
» Empty
» Deleted
» Full

> Cells marked as deleted are considered to part of
collision chains

> Cells marked as deleted are eligible to be filled with
new entries

Maps–18© Gunnar Gotshalks

Load Factor Too Large

• As tables become too full they are resized
» Typically double the size of the array
» Rehash all the entries in the old table into the new table

> O(Number_of_table_entries)

• When cost is amortized over all insert operations we can
maintain O(1) performance

