Hash Tables

© Gunnar Gotshalks

Definition

- A hash table has the following components
 - » An array called a table of size N
 - » A mathematical function called a hash function that maps keys to valid array indices hash_function: key → 0 .. N – 1
- Table entries are stored and retrieved by applying the hash function to the entry key to get the index used to probe the table.

Hash Function Basic Properties

- A hash function consists of two parts
 - » Hash code function
 - > Maps the key into an interval that at least includes the interval [0, N – 1]

hash_code (key) \rightarrow integer

- » Compression function
 - > Maps the integer from the hash code function to the integer interval [0, N 1]

compress (integer) $\rightarrow 0 ... N - 1$

> Backward function composition

compress o hash_code : key $\rightarrow 0$.. N – 1

> Program function composition

compress (hash_code (key)) $\rightarrow 0 .. N - 1$

Hash Function Basic Properties – 2

- A good hash function will distribute the expected keys uniformly over the array
 - » The index probability distribution should follow a uniform distribution
 - » Any index is equally likely as any other index
- In Java the Object class has a default hashCode() method that returns a 32 bit integer.
 - » In general this is not a good method to use as frequently it is just the address of the object in memory.
 - > It is implementation dependent and cannot be relied on
 - > It does not do a good job for strings, which are most frequently used as keys

Polynomial Hash Function

- Good to use for strings
 - » Have a sequence of items (characters for strings) that have a hash code (ASCII representation for characters)

string =<
$$c_1, c_2, ..., c_k$$
 >

» Combine the sequence of hash codes using Horner's rule for evaluating polynomials, where m is often a prime number

$$hash_code = c_k + m(c_{k-1} + m(c_{k-2} + \dots + m(c_2 + mc_1)...)))$$

Compression Functions

• The simplest compression function is to use the modulus function

Hash_Code mod Table_Size

- Sometimes the MAD (Multiple Add Divide) is used
 - - A mod Table_Size ≠ 0
 - B ≥ 0
 - Table_Size is a prime number

Collisions

- The key space is very, very, very much larger than the table size
 - » Therefore many keys map to the same table index
 - » These keys are said to collide
- As a consequence, we need a collision resolution method

Separate Chaining

- Each entry in the array contains a list of the keys that hash to that bucket.
 - » O ([number_of_entries / Table_size])
 - » It is O(1) provided number_of_entries is O(Table_Size)
 - » Keep load factor below 90%, 75% is used in Java API

Open Addressing

- When collisions occur select another location in the array to store the item.
- The following are common variations
 - » Linear probing
 - » Quadratic probing
 - » Double hashing

Linear Probing

• Initial location is

i ← hash_code(key)

- For collision resolution iterate over k = 0, 1, 2 ... until an empty bucket is found
 - » (i + k) mod Table_Size

> Given the following table

> Suppose hash_code(X) = 3, 4 or 5, then X is stored in location 6

Linear Probing – Problem

- If the table is relatively empty and keys hash with equal probability for any bucket then insert and search is O(1)
- As the table fills, collision chains build up degrading performance
- As the table becomes over 80% separate chains start combining creating every long chains at an ever increasing rate, degrading performance even more.

» For many keys performance can approach O(N).

- Heuristic
 - » have tables about 50% to 80% full to make good use of space and keep performance close to O(1).

Quadratic Probing

• Initial location is

```
i ← hash_code(key)
```

 For collision resolution iterate over k = 0, 1, 2 ... until an empty bucket is found

» (i + k²) mod Table_Size

Quadratic Probing Problem

- Secondary clustering
 - » Set of filled buckets "bounces" around in a fixed pattern
 - » May not find an empty bucket if the table is more than 50% full.

Double Hashing

Initial location is

i ← hash_code(key)

- Collision resolution iterate over k = 0, 1, 2 ... until an empty bucket is found
 - » (i + k*hash2(key)) mod Table_Size
- Hash2 cannot evaluate to zero
 - » If key is an integer, a common choice is
 - > hash2(key) = prime (key mod prime)
 - prime < Table_Size</pre>

Double Hashing Problem

• Have to carefully analyze hash function to minimize clustering for the expected key distribution

Open Addressing vs Chaining

• Open addressing saves space

» no need for pointers

• Open addressing could be faster

» no need to create list nodes and link them

- But chaining is found to be competative with open addressing depending upon the load factor in the table array
- Chaining tends to be used more unless
 - » space is at a premium
 - » and clustering can be minimized with open addressing

Open addressing entry removal

- Cannot just remove a key and set the cell to empty
 - » Could be part of a chain for a different key
- Only reasonable algorithm is have cells in three states
 - » Empty
 - » Deleted
 - » Full
 - > Cells marked as deleted are considered to part of collision chains
 - > Cells marked as deleted are eligible to be filled with new entries

Load Factor Too Large

- As tables become too full they are resized
 - » Typically double the size of the array
 - » Rehash all the entries in the old table into the new table
 - > O(Number_of_table_entries)
- When cost is amortized over all insert operations we can maintain O(1) performance