Tree Algorithms

© Gunnar Gotshalks TreeAlgorithms—1

Tree Traversals

e An important class of algorithms is to traverse an entire
data structure — visit every element in some fixed order

e For trees there are two types of traversals, each with their
variations
» Breadth first traversal
> Level by level
— Left to right across a level, or, right to left across a level
» Depth first traversal
> Go as deep as possible before going along a level

— preorder, inorder, postorder — each going clockwise or anti-
clockwise around the tree

© Gunnar Gotshalks TreeAlgorithms—2

Breadth First Traversal

e Visit and process the nodes in one of the following orders

»EBFADHC or EFBHDAC
E
B F
A D H

© Gunnar Gotshalks TreeAlgorithms—3

Breadth First Traversal — 2

 Queue saves pointers to tree nodes for later processing

Require root # void
Ensure V node € Tree - processed (node)

Q < new Queue An example of the
Q.put (root) Template Pattern
Loop Invariant

VY node € {n € tree(root) } \

{n1 €Q-°*V n2ectree(nl) * n2}
* processed(Node)

while ~empty (Q) do

node < Q.take // Put children in Queue

if node.left # void then Q.put (node.left) fi

if node.right # void then Q.put (node.right) fi

process (hode) // Visit the node

end

© Gunnar Gotshalks TreeAlgorithms—4

Breadth First Traversal — 3

e EXxercises

» Apply the algorithm to the example in the slide Breadth
First Traversal

» What changes are required in the algorithm to change
the order of processing nodes within a level?

» What changes are required in the algorithm to handle a
general tree?

© Gunnar Gotshalks TreeAlgorithms—5

Depth First Traversal

Preorder — process on

E the way down
/ EBADCFH
B F Inorder — process while
going underneath
ABCDEFH
A D H
/ Postorder — process on
the way up
C ACDBHFE

Have another 3 orderings by

reversing the arrows
© Gunnar Gotshalks TreeAlgorithms—6

Depth First Traversal — 2

e Depth first traversal uses a stack to save pointers to
nodes for later processing

e Recursion uses a stack, so a recursive algorithm is a
natural for depth first traversal

An example of the
Template Pattern
process (node)
traverse (node) is

if node = vgid then preorder on the way down

traverse i node.left) inorder going under a node

traverseinode.right) y Postorder on the way up

fi
end

© Gunnar Gotshalks TreeAlgorithms—7

Depth First Traversal — 3

e EXxercises

» Apply the algorithm to the example in the slide Breadth
First Traversal

» What changes are required in the algorithm to reverse
the order of processing nodes for each of preorder,
inorder and postorder?

» What changes are required in the algorithm to handle a
general tree?

© Gunnar Gotshalks TreeAlgorithms—8

Node Depth General Case

e (O(N) algorithm, where N is the number of nodes in the Tree
» O(Dpode); Where D oge is the depth of the node

» Note the assumption that general tree nodes have a
pointer to the parent

> Depth is undefined for empty tree

Require tree # Void A node € tree
Ensure Result = pathLength (node, tree)

depth (node, tree) : Integer is
if node = tree.root then Result <— 0
else Result < 1 + depth (node.parent, tree)
fi

end

© Gunnar Gotshalks TreeAlgorithms—9

Node Depth Binary Tree

e Permit node = Void on recursion to simplify algorithm

Require client tree # Void A node € tree
Ensure Result = pathLength (node, tree)

integer depth2 (node, tree) is depth_sup (node, tree, 0) end

Require True
Ensure (node & tree A Result=-1)

v (node € tree A Result = pathLength (node, tree))

depth_sup (node, tree, depth) : Integer is
if node = Void then Result < -1
elseif node = tree.root then Result <— depth
else Result < max (depth_sup (node, tree.left, depth+1)
, depth_sup (node, tree.right, depth+1)
fi
end

© Gunnar Gotshalks TreeAlgorithms—10

Tree Height General Case

e An O(N) algorithm, N is the number of nodes in the tree

Require node = Void Height is undefined for empty tree
Ensure ~hasChildren (node) — Result =0

hasChildren (node) —
Result =1 +\max/{ ¢ : children (node) - height (c))

. H \

height1 (node) : Integer is Binary_op / sequence
if ~hasChildren (node) then Result < 0 reduce the sequence
else children <— childrenOf (node) using the operator

height < 0
for child in children do height <— max (height
, height1 (child))
end
Result < 1 + height
fi
end
© Gunnar Gotshalks TreeAlgorithms—11

Tree Height General Case — 2

e An O(N?) algorithm, N is the number of nodes in the tree —
from page 274 of the textbook

» Why is this O(N?)

height_tb (Tree) : Integeris
height < 0
for node in externalNodes(T) do
height < max (height, depth (Tree, node))
end
Result < height
end

© Gunnar Gotshalks TreeAlgorithms—12

Tree Height Binary Tree

height2 (node) : Integer is
if node.left = Void then
If node.right = Void then Result < 0
else Result <— 1 + height2 (node.right)
fi
else
If node.right = Void then Result < 1 + height2 (node.left)
else Result < 1 + max (height2 (node.left)
, height2 (node.right))
fi
fi
end

© Gunnar Gotshalks TreeAlgorithms—13

Tree Height Binary Tree — 2

e Simplify algorithm by defining height of empty tree as —1

» Use mathematical properties of integers and arithmetic

Require client node # Void
recursion True

height3 (node) : Integer is
if node = Void then Result < -1
else Result <~ 1 + max (height3 (node.left)
, height3 (node.right))
fi
end

© Gunnar Gotshalks TreeAlgorithms—14

Tree Height Binary Tree — 3

e |esson from previous slide — do not treat tree empty tree

as special case
Binary_op / sequence

e Special cases complicate algorithms reduce the sequence
using the operator

Require True Can call for empty tree
Ensure Result =1 +max/(c : children (node)
- height (node))

height4 (node) : Integer is
if node = Void then Result <— 0 Empty tree has 0 height
else Result < 1 + max (height4 (node.left)
, height4 (node.right))
fi
end

© Gunnar Gotshalks TreeAlgorithms—15

Inorder Traversal Binary Tree

e Binary tree has 8 different traversal orders

» 6 for depth first plus 2 for breadth first

> Template comes from slides on Enumeration

Require True

Ensure Nodes returned in inorder sequence

public Enumeration elements () {
return new Enumeration() {

public boolean hasMoreElements() { Provide the definition -1 }
public Object nextElement() { Provide the definition -2 }

Declare variables needed by the enumerator — 3
{ Initialization (constructor) program for the enumerator — 4

H

© Gunnar Gotshalks

TreeAlgorithms—16

Inorder Traversal Binary Tree — 2

// Declare variables needed by the enumerator — 3
private Stack btStack = new Stack();
{ Initialization (constructor) program for the enumerator — 4

// Simulate recursion by programming our own stack. Need to get to
// the leftmost node as it is the first in the enumeration.

Node node = tree; root A
while node != null) {
btStack.add (node);
node = node .left;
}
top of —¥

stack

© Gunnar Gotshalks TreeAlgorithms—17

Inorder Traversal Binary Tree — 3

// Provide definition — 2

Require True
Ensure Result = another element to get

public boolean hasMoreElements() {
return !btStack.isEmpty();

}

© Gunnar Gotshalks TreeAlgorithms—18

Inorder Traversal Binary Tree — 4

// Provide definition — 3

Require hasMoreElements
Ensure Result = next element in sequence and it is removed
from the sequence

public Object nextElement() {

Node node = (Node) btStack.remove();

Object result = node.datum // next item to return

if (node.right != null) { // Find next node in sequence
node = node.right;
do { btStack.add(node); // Get leftmost node in right

node = node.left; // subtree

} while (node != null);

}

return result;

}

© Gunnar Gotshalks TreeAlgorithms—19

Inorder Traversal Binary Tree — 5

after after
root InitStack call 1 call 2

A 3 6
’(1& 2 5
2 Q 1 4
2

1

top of ar\Q
stack — Y

initially 4 An enumerator is
always one element
ahead of the user

z
9,
E-/ ‘b\ top of stack after

second call to nextElement

el A+ RS)

tnp of stack after

first call to nextElement

© Gunnar Gotshalks TreeAlgorithms—20

Class Structure

e ADT definitions can found in textbook and in the FlexOr

i, "

Library
"
S N ~ Binary_Tree
KEmary_Tree f:hx Node >

© Gunnar Gotshalks TreeAlgorithms—21

