
TreeFundamentals–1© Gunnar Gotshalks

Tree Definitions
&

Types of Trees

TreeFundamentals–2© Gunnar Gotshalks

On Pointers

TreeFundamentals–3© Gunnar Gotshalks

On Pointers – 2

TreeFundamentals–4© Gunnar Gotshalks

On Pointers – 3

TreeFundamentals–5© Gunnar Gotshalks

Trees

TreeFundamentals–6© Gunnar Gotshalks

Terminology

TreeFundamentals–7© Gunnar Gotshalks

Terminology – 2

TreeFundamentals–8© Gunnar Gotshalks

Terminology – 3

• Root – node with no parent

• Leaf – node with no children – also called external (all
other nodes are internal)

TreeFundamentals–9© Gunnar Gotshalks

Tree Definition

TreeFundamentals–10© Gunnar Gotshalks

Terminology – 4

TreeFundamentals–11© Gunnar Gotshalks

Terminology – 5

• Node level & node depth – the path length from the root
> The root is level 0 and depth 0
> Other nodes depth is 1 + depth of parent

TreeFundamentals–12© Gunnar Gotshalks

Terminology – 6

• Height of a tree – The longest path length from the root to
a leaf.

> Non empty tree: Height = max depth

TreeFundamentals–13© Gunnar Gotshalks

• Degree – the maximum number of possible children for
every node in the tree

• Proper tree (full tree) – Nodes have all children non-void,
or all children are void

> A full tree of height 2 and degree 3

> If some of the nodes have fewer actual children the
tree is still of degree 3

Terminology – 7

TreeFundamentals–14© Gunnar Gotshalks

Terminology – 8

• Complete – All levels are full except for the deepest level,
which is partially filled from the left

> A complete binary tree of degree 2

TreeFundamentals–15© Gunnar Gotshalks

Terminology – 9

• Balanced – Different definitions depending upon type of
tree
» Having 1/N of the nodes in each of N children
» Height of all subtrees within constant K

> In a binary tree
– Height(left_subtree) – Height(right_subtree) ≤ K

» max_level(leafNode) – min_level(leafNode) ≤ K
> For a complete tree K= 1

• Balance – Redistribute the nodes to restore balance constraint
while maintaining the ordering property

TreeFundamentals–16© Gunnar Gotshalks

Types of Trees

• General tree
» Every node can have any number of sub-trees, there is

no maximum
» Different number is possible of each node

• N’ary tree
» Every node has at most N sub-trees

> Special case N= 2 is a binary tree
> Sub-trees may be empty – pointer is void

TreeFundamentals–17© Gunnar Gotshalks

Ordered Trees

• Can be general or N’ary but have one additional constraint
» An ordering is imposed between the parent and its

children
» Each node has one or more keys that are in an order

relationship (< ≤ ≥ >) with the keys in its children
> The same relationship pattern is used throughout

for all nodes in the tree

TreeFundamentals–18© Gunnar Gotshalks

Ordered Trees – N’ary case

• Each note contains 1 to N–1 keys

 key_1 < key_2 < … < key_n-1

TreeFundamentals–19© Gunnar Gotshalks

Ordered Trees – Binary Search Tree

• Special case N’ary with N=2
» Complementary relationship of the parent with two

children
key_left_child < key_parent < key_right_child

TreeFundamentals–20© Gunnar Gotshalks

Ordered Trees – Heap

• Special case N’ary with N=2 and a complete binary tree
» Same relationship between the parent and each child

 key_left_child < key_parent > key_right_child

TreeFundamentals–21© Gunnar Gotshalks

N’ary Tree Nodes

• Unordered & ordered trees – for small N
» Data + specific names for pointer fields

TreeFundamentals–22© Gunnar Gotshalks

N’ary Tree Nodes – 2

• Unordered trees – large N
» Data + array of pointers

• Ordered trees – large N
» Array of keys and an array of pointers that are logically

interspered

TreeFundamentals–23© Gunnar Gotshalks

General Tree Nodes

• Use list of pointers – for any number of children

TreeFundamentals–24© Gunnar Gotshalks

Array Representation of N’ary Trees

• If N’ary trees are complete, then can use arrays to store
the data.
» Pointers are indices to the array (addresses relative to

the start of the array scaled by the size of a pointer)
» Use arithmetic to compute where the children are

• Binary trees are a special case
» Heaps are usully implemented using arrays to represent

a complete binary tree

TreeFundamentals–25© Gunnar Gotshalks

Array Representation – 2

• Mapping between a complete binary tree and an array

TreeFundamentals–26© Gunnar Gotshalks

Array Representation – 3

• In general for an N’ary tree the following set of
relationships holds – the root must have index 0
 child_1 = N * parent + 1
 child_2 = N * parent + 2
 child_3 = N * parent + 3
 •••
 child_N = N * parent + N

• The binary case is an exception where the root can be
index 1 because 2*1 = 2, the index adjacent to the root
» This gives the pair 2 * parent & 2 * parent + 1, which is

less arithmetic than the above, and the inverse to find
the parent is easier to compute.

Nodes are numbered
in breadth traversal
order

TreeFundamentals–27© Gunnar Gotshalks

Representing General Trees as Binary Trees

• Binary trees are all that are logically necessary
» Lisp programming language for artificial intelligence

applications has binary trees as its fundamental (and in
theory only) data structure.

TreeFundamentals–28© Gunnar Gotshalks

An Example

