Tree Definitions
&
Types of Trees
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On Pointers

¢ Pointers represent relationships between objects

» |n a singly linked list they show the successor
(next) relationship

data
— successor

next

» |n a doubly linked list one pointer shows the
successor relationship and the other pointer
shows the predecessor (prev) relationship

data

SUCCESSO0r

predecessor _ next
prev
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On Pointers — 2

¢ Pointers in singly and doubly linked lists show an

ordering relationship

e A pointer can be used to show any binary relationship

Alice »| Bob

The above can represent

» Alice is the mother of Bob
Alice is the mentor of Bob
Alice telephones Bob
Alice emails Bob
etc.
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On Pointers — 3

* QObjects can have the same relationship with more

than one other object

» A is the mother of B, Cand D
A is the mentorof B, Cand D
A telephones B,Cand D
Aemails B, Cand D

etc.
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Trees

 Trees show a relationship among a collection of
objects (nodes), where relationships are one way
and only one object (node) is at the head of every

dlrTow
Supervises
- Mother of
B C D Contains
/ l "1 Owns
E F G et cetera
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Terminology

e Parent — node at the tail of an arrow
¢ Child — node at the head of an arrow

e Siblings — nodes with the same parent

A is the parent of D

B,C &D are
siblings

Dis a child of A
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Terminology — 2

e Ancestor — the node itself, parent, parent of parent,
etc.

¢ Descendent — the node itself, child, child of child,
etc.

Ancestor

Descendants of D
of E
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Terminology — 3

e Root — node with no parent

e [eaf — node with no children — also called external (all
other nodes are internal)

~_-Root
A

Leaves
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Tree Definition

e An empty tree is a tree

¢ A node of type T with a finite number of children

where each child is a disjoint tree of base type T,
called a subtrees

A
A subtree
C D
G | .
All subtrees
are empty,

leaf node
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Terminology — 4

e Path - the set of edges from the root to a node

e Path length — the number of edges in a path

Pathfrom AtoHis
<A,B> <B,F> <F,H>

Length is 3 l
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Terminology — 5

e Node level & node depth — the path length from the root
> The root is level 0 and depth 0
> Other nodes depth is 1 + depth of parent

A Depth = Level =0
B c D Depth = Level = 1
£ F G Depth = Level = 2

H Depth = Level = 3
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Terminology — 6

e Height of a tree — The longest path length from the root to
a leaf.

> Non empty tree: Height = max depth

A A
'
B C D
Height = 3
/ N\ ' -
E F G
'
H | Depth=3 Y
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Terminology — 7

e Degree — the maximum number of possible children for
every node in the tree

e Proper tree (full tree) — Nodes have all children non-void,
or all children are void

> A full tree of height 2 and degree 3

T

RN RN

> If some of the nodes have fewer actual children the
tree is still of degree 3
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Terminology — 8

e Complete — All levels are full except for the deepest level,
which is partially filled from the left

> A complete binary tree of degree 2

N

N N
[\ 7\ ]

—_——— - —_——— - —_——— -
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Terminology — 9

e Balanced — Different definitions depending upon type of
tree

» Having 1/N of the nodes in each of N children

» Height of all subtrees within constant K

> In a binary tree
— Height(left_subtree) — Height(right_subtree) < K

» max_level(leafNode) — min_level(leafNode) = K
> For a complete tree K= 1

e Balance — Redistribute the nodes to restore balance constraint
while maintaining the ordering property
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Types of Trees

e (General tree

» Every node can have any number of sub-trees, there is
nOo maximum

» Different number is possible of each node
e Nary tree
» Every node has at most N sub-trees

> Special case N= 2 is a binary tree
> Sub-trees may be empty — pointer is void

© Gunnar Gotshalks TreeFundamentals—16



Ordered Trees

e Can be general or N’'ary but have one additional constraint

» An ordering is imposed between the parent and its
children

» Each node has one or more keys that are in an order
relationship ( < = = > ) with the keys in its children

> The same relationship pattern is used throughout
for all nodes in the tree
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Ordered Trees — N’ary case

e Each note contains 1 to N—1 keys

key_1<key 2<... <key n-1

key_1 key_ 2 -+ | key_n-1

all keys
< key_1 key 2 key:n-1
key_1 = <
Y all keys all keys all keys
< <
key_2

key 3

© Gunnar Gotshalks TreeFundamentals—18



Ordered Trees — Binary Search Tree

e Special case N’ary with N=2

» Complementary relationship of the parent with two
children

key_left_child < key_parent < key_right_child
E

< <

B F

NN

A D G
4

Cc
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Ordered Trees — Heap

e Special case N’ary with N=2 and a complete binary tree

» Same relationship between the parent and each child
key_left_child < key_parent > key_right_child

100
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N’ary Tree Nodes

e Unordered & ordered trees — for small N

» Data + specific names for pointer fields

data (& key)

binary tree

left right

R

ternary tree
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N’'ary Tree Nodes — 2

e Unordered trees — large N

» Data + array of pointers

Data ||l

e Ordered trees — large N

» Array of keys and an array of pointers that are logically
interspered

key_1 key 2 -« | key_n-1

N R R
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General Tree Nodes

e Use list of pointers — for any number of children

Could have pointer to parent
to parent in nodes of any type of tree

Y Y Y Y

to children
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Array Representation of N’ary Trees

e |f N'ary trees are complete, then can use arrays to store
the data.

» Pointers are indices to the array (addresses relative to
the start of the array scaled by the size of a pointer)

» Use arithmetic to compute where the children are

e Binary trees are a special case

» Heaps are usully implemented using arrays to represent
a complete binary tree
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Array Representation — 2

e Mapping between a complete binary tree and an array

left =2 * parent "TA right =2 * parent + 1

RN
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Array Representation — 3

e In general for an N’ary tree the following set of
relationships holds — the root must have index 0

child_1 =N * parent + 1
child_2 = N * parent + 2
child_3 =N * parent + 3

Nodes are numbered
in breadth traversal
order

child_N =N * parent + N

e The binary case is an exception where the root can be
index 1 because 2*1 = 2, the index adjacent to the root

» This gives the pair 2 * parent & 2 * parent + 1, which is
less arithmetic than the above, and the inverse to find
the parent is easier to compute.
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Representing General Trees as Binary Trees

e Binary trees are all that are logically necessary

» Lisp programming language for artificial intelligence
applications has binary trees as its fundamental (and in
theory only) data structure.
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An Example

ﬂ\ first child

data

left
|

right

— next sibling

B
E

S
'
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