
1

Array Abstract Data Type
Table of Contents

What this module is about .. 1
Introduction .. 2
Data type objects ... 3

Array elements .. 3.1
Sub -arrays .. 3.2
Array descriptor ... 3.3

Data type operations ... 4
Enquiry operations .. 4.1
Read operations .. 4.2
Write operations .. 4.3
Sparse array operations .. 4.4

Array memory allocation methods .. 5
Row and column storage .. 5.1
General formula to compute the address of an array element .. 5.2
Sparse arrays .. 5.3

1 What this module is about
This module contains a description of the array data type and some discussion as to how we
allocate memory space to arrays.

The value of defining arrays as an abstract data type is primarily for systems programmers,
who work behind the scenes and bring you all the wonderful software that comes with an
operating system, such as compilers, linkers, file managers, text editors, etc. For most of us
mortal people, we simply use arrays in our programming languages without thought of the more
abstract nature of arrays.

We do not go into detailed program implementations.

2 Introduction
The array data type is the simplest structured data type. It is such a useful data type
because it gives you, as a programmer, the ability to assign a single name to a homogeneous
collection of instances of one abstract data type and provide integer names for the individual
elements of the collection. Figure 1 shows an array[1..7] of COLOUR. You, the programmer, can
then compute the name of a specific element and avoid the need for explicitly declaring a
unique name for each array element. Consider how difficult it would be to program if you had
to declare explicitly a separate name to each array element and use such names in your programs.

1 2 3 4 5 6 7
 Figure 1: A seven element array of COLOUR.

Because the names of array elements are computed, the computer requires a means of finding !

at execution time ! the physical storage location corresponding to an array element from the

2 Array ADT

index, or name, of the array element. As a consequence, not only do we require space for the
array elements themselves, but we also require space for an array descriptor which is used at
execution time to map array indices to memory addresses. The array descriptor contains the
size of the array elements, the number of dimensions and bounds of each dimension.

NOTE: In fact, for all data types beyond the primitive data types we require data
descriptors. One could even define the primitive data types as those data
types which do not require data descriptors. If you reflect on the declaration
section of any programming language, you will find that the non primitive data
types have complex definitional parameters. These definitional parameters
correspond to the information required in the data descriptors.

To make it easy to compute the memory address of an array element and to make memory
management simple, we have the restriction that each element of the array must be of the same
type, so that each array element can be allocated a pre−defined and equal amount of memory
space.

Multi−dimensional arrays are defined as multiple levels of one dimensional arrays. For
example, the following definition of the three−dimensional array of colours

array[1 .. 5 ; -2 .. +6 ; -10 .. -1] of COLOUR

actually means
array[1 .. 5] of
 array[-2 .. +6] of
 array[-10 .. -1] of COLOUR

3 Data type objects
The entire array is a single entity, represented by its name. For example in the following,
the name chess_board refers to the entire array.

chess_board : array[1 .. 8 , 1 .. 8] of SQUARE

3.1 Array elements
Each array element is a separate object. Array elements are represented by the array name plus
a set of subscripts. Each subscript is in turn represented by an arithmetic expression. For
example, we could have a two−dimensional array called chess_board and we could refer to one of
its elements ! one of the squares on the chess board ! using the following notation.

chess_board[row-1, column+2]

Another example is the the postion of an airplane over time. This requires three space
coordinates, latitude, longitude and height, and one time coordinate.

plane_position[its_latitude, its_longtidue, its_height, universal_time]

3.2 Sub -arrays
If a subscript expression represents a range of subscript values then we consider the
corresponding sub−array as individual object. The structure, or shape, of the sub−array
depends upon what ranges we permit subscript ranges to have. The following shows some examples.

1. chess_board[*, 3] ! refers to the sub−array of all squares in column 3.
2. chess_board[2 .. 6 , 3] ! refers to the sub−array of squares in rows 2, 3, 4, 5 and 6

and in column 3.

Fundamentals of Data Structures 3

3. chess_board[2 .. 6 , 3 .. 5] ! refers to the sub−array of squares in rows 2, 3, 4, 5
and 6, and in columns 3, 4 and 5.

3.3 Array descriptor
An array also has associated with it an array descriptor. The array descriptor consists of the
following objects ! see Figure 2.

1. The address, A0 , of the array element which represents the location of the array
element with all subscripts equal to zero. This may be a physically non−existent
location in main memory because arrays may be defined with arbitrary upper and lower
bounds. Users of arrays do not see this object. We include it because it is
required for the complete understanding of how array element addresses are computed.

2. The number of dimensions, dim_count, of the array.
3. A descriptor triple for each dimension of the array.

LBi ! the lower bound of dimension i
UBi ! the upper bound of dimension i
SZi ! the size (space requirement) for dimension i

A "

L$1

L$2

L$dc

)$1

)$2

)$dc

S+1

S+2

S+dc

...

dim/count

dc 5 dim/count

Figure 2: A prototypical array descriptor.

4 Data type operations
The operations on arrays are described in this module as procedure and function calls. However,
because the array data type is built into most programming languages, a different special
purpose syntax is used when arrays and array elements are referenced ! see the sections
following the section Data type objects.

4.1 Enquiry operations
These operations retrieve information from the array descriptor.

4.1.1 How many dimensions does an array have?

dimensions (an_array : ARRAY) : INTEGER

4 Array ADT

require an_array " void.
ensure Result = dim_count.

Program text is not referenced

4.1.2 What is the lower bound of a given dimension of an array?

lower_bound (an_array : ARRAY ; dimension : INTEGER) : INTEGER

require an_array " void and 1 # dimension # dim_count
ensure Result = LBdimension.

Program text is not referenced

4.1.3 What is the upper bound of a given dimension of an array?

upper_bound (an_array : ARRAY ; dimension : INTEGER) : INTEGER

require an_array " void and 1 # dimension # dim_count
ensure Result = UBdimension.

Program text is not referenced

4.1.4 What is the amount of space used by an array element of a given dimension?

size_of_element (an_array : ARRAY ; dimension : INTEGER) : INTEGER

require an_array " void and 1 # dimension # dim_count
ensure Result = SZdimension.

Program text is not referenced

4.2 Read operations
Only one function is necessary.

4.2.1 What is the address of a specifically indexed array element?

index (an_array : ARRAY ; index1, ! , indexdim_count : INTEGER) : REFERENCE

require an_array " void
 $ i : 1 .. dim_count " LBi # indexi and indexi # UBi
ensure Result = location_of(an_array[index1, ! , indexdim_count]).

The function returns the address of the array element with the specified index set. We
represent the address as a reference to a memory location.

Program text is not referenced

4.3 Write operations
The only operations are to be able to create a new array and dispose of an existing array.

4.3.1 Create a new array

create_array (an_array : NAME ; dim_count , basic_size
 , LB1 , ! , LBdim_count , UB1 , ! , UBdim_count : INTEGER) : REFERENCE

Fundamentals of Data Structures 5

require an_array " void
ensure Result = address of an_array that is an array with the specified number of dimensions
and with the specified lower and upoer bounds for each dimension.

Program text is not referenced

4.3.2 Dispose of an existing array

delete_array (an_array : ARRAY)

require an_array " void
ensure an_array is no longer a valid name as the array is removed from the environment.

Program text is not referenced

4.4 Sparse array operations
Sparse arrays are arrays which have mostly undefined or zero elements. Special storage
techniques are used to save space by not reserving space for the unused array elements. Sparse
arrays require two special operations.

4.4.1 Add an element to a sparse array

add_array_element (array_name : ARRAY , value : VALUE
 , index1, ! , indexdim_count : INTEGER)

require an_array " void
 $ i : 1 .. dim_count " LBi # indexi and indexi # UBi value is a valid
array value
ensure The value is inserted into the array at the specified index position. If the element is
already in the array the value will be changed.

Program text is not referenced

4.4.2 Delete an element from a sparse array

delete_array_element (array_name : ARRAY , index1, ! , indexdim_count : INTEGER)

require an_array " void
 $ i : 1 .. dim_count " LBi # indexi and indexi # UBi
ensure The appropriate array element is removed from the table.

Program text is not referenced

5 Array memory allocation methods
In this module, we only describe, in more detail, row and column order memory allocation and
sparse matrix memory allocation. We do not describe in detail memory allocation methods for
other special cases such as triangluar arrays (values above or below the main diagonal are all
zero) and symmetric arrays (where the relationship A[i,j] = A[j,i] holds). In the last two
cases, it is wasteful to store all those zero or repetative array values.

5.1 Row and column storage
This is the most common method of allocating memory space to an array. With this method we
assume that all of the array elements are to be equally accessible at all times.

6 Array ADT

The first step is to compute the total space required by all the array elements and
allocate one contiguous chunk of memory big enough to contain all the array elements. The
starting address for the allocated memory is As.

The second step is to assign array elements to a sequence of memory locations. The method
chosen must have the property that an efficient index function can be created to compute
quickly the memory location of any array element from a given set of indices.

The assignment of array elements to memory locations is done by systematically varying the
index values. We treat each index position as a digit in a mixed radix numbering scheme where
the digit values in each position vary between the lower and upper bounds associated with the
index position. The systematic variation is to "add one" to a given index set to obtain the
next array element in sequence.

NOTE: In decimal notation, each digit position in a number is assigned the same
range of digit values, ’0’ to ’9’. In array storage allocation each digit position
has its own range of digit values.

We now have two choices as to how to "add one". We can add at the right most index
position and propagate carries to the left. Or, we can add at the left most index position and
propagate carries to the right. If the right most subscript changes faster, we have row order
storage ! used in C and Java. If the left most subscript changes faster, we have column order
storage ! used in Fortran. The terminology arises from the pictorial representation of storing
a two dimensional array.

1"1

2"1

4"1

1"2

2"2

4"2

1"3

2"3

4"3

3&1 3"2 3"3

Figure 3: A 4x3 two−dimensional array.

... ...

row 1

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3

row 2 row 3 row 4

Figure 4: Row order storage for the array in Figure 3.

column 1

... ...1,1 2,1 3,1 4,1 1,2 2,2 3,2 4,2 1,3 2,3 3,3 4,3

column 2 column 3

Figure 5: Column order storage for the array in Figure 3.

Fundamentals of Data Structures 7

5.2 General formula to compute the address of an array element
The formula, F1, is used to compute the address of an array element.

(F1) As + %
dc

k=1

 (Ik ! LBk) # SZk where dc = dim_count
As = address of the first array element

The calculation of the size, SZk , of the elements in each dimension of the array is done
once at the time the array is created and is stored in the array descriptor. The recurrence
relation (R1) is used to compute the values of SZk .

(R1) SZdim_count = the size of the base type for the array
 SZk = SZk+1 # (UBk+1 ! LBk+1 + 1) $k : dim_count ! 1 ! 1

NOTE: If, for the computation, we number the dimensions in A[*, ! , *] from left to right we
have row order storage. If, for the computation, we number the dimensions from right to left
we have column order storage.

The following arithmetic relationship, R2, is true.
(R2) %

dc

k=1
 (Ik ! LBk) # SZk = %

dc

k=1
 Ik # SZk ! %

dc

k=1
 LBk # SZk

We substitute the right hand side of R2 into the formula F1 to obtain the formula F2.
(F2) As + %

dc

k=1
 Ik # SZk ! %

dc

k=1
 LBk # SZk

Note that As and %
dc

k=1

 LBk # SZk are constants, so we can define the following

relationship R3. A0 is the memory address where the array element with all zero indicies would
be stored.

(R3) A0 = As ! %
dc

k=1

 LBk # SZk

A0 is a constant that only needs to be computed once at the time the array is created. As a
consequence, the value of A0 is stored in the array descriptor and we can compute the address
of an array element using the formula F3.

(F3) A0 + %
dc

k=1

 Ik # SZk

Example 1: Figure 6 shows an example definition for a four−dimensional array and its
corresponding descriptor that corresponds to row order storage. The arithmetic terms are left
unsimplifed to show how the formulas are applied.

8 Array ADT

3

–2

–6

6

+2

0

5 * 6*7*n

6 * 7*n

n

0 5 7 * n

4

array[3..6 , -2..+2 , 0..5 , -6..0] of T
 ----8
 array [3..6] of
 array [-2..+2] of
 array [0..5] of
 array [-6..0] of T

T, the base type, is of size n bytes.

 is 1000As

1000 – ((3 * 5*6*7*n)
 +(–2 * 6*7*n)
 +(0 * 7*n)
 +(–6 * n))

Figure 6: An example array descriptor
 for a 4-dimensional array

1

2

3

4

LB UB SZ

5.3 Sparse arrays
A special case occurs when most of the array elements are zero or undefined. In such cases, we
do not want to store all the zero elements. There are various schemes used to store such
arrays which make efficient use of memory. What all the methods have in common is that extra
information must be stored that maps array indices to memory locations.

A table, called the index−value table, is formed which stores the index values for the non−
zero array elements together with the array element value corresponding to the index set. When
a reference is made to an array element, the indices are compared with those in the index−value
table until a match is found and the array element value is returned, or, if there is no match,
and a zero value is returned.

The differences among ways of storing sparse arrays occur in the method used to store the
index−value table. The table could be implemented using arrays or, as is also common, using a
multi−list structure.

