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Abstract—Traditional speaker authentication focuses on
speaker verification (SV) and speaker identification, which is
accomplished by matching the speaker’s voice with his or her
registered speech patterns. In this paper, we propose a new
technique,verbal information verification(VIV), in which spoken
utterances of a claimed speaker are verified against the key (usu-
ally confidential) information in the speaker’s registered profile
automatically to decide whether the claimed identity should be
accepted or rejected. Using the proposed sequential procedure
involving three question-response turns, we achieved an error-free
result in a telephone speaker authentication experiment with 100
speakers.

We further propose a speaker authentication system by com-
bining VIV with SV. In the system, a user is verified by VIV
in the first four to five accesses, usually from different acoustic
environments. During these uses, one of the key questions pertains
to a pass-phrase for SV. The VIV system collects and verifies the
pass-phrase utterance for use as training data for speaker model
construction. After a speaker-dependent model is constructed,
the system then migrates to SV. This approach avoids the incon-
venience of a formal enrollment procedure, ensures the quality
of the training data for SV, and mitigates the mismatch caused
by different acoustic environments between training and testing.
Experiments showed that the proposed system improved the SV
performance by over 40% in equal-error rate compared to a
conventional SV system.

Index Terms—Speaker authentication, speaker recognition,
speaker verification, utterance verification, verbal information
verification.

I. INTRODUCTION

T O ENSURE proper access to private information, personal
transactions, and security of computer and communica-

tion networks, automatic user identification or authentication
is necessary. Among various kinds of authentication methods,
such as voice, password, personal identification number (PIN),
signature, finger print, iris, hand shape, etc., voice is the most
convenient one because it is easy to produce, capture, and
transmit over the telephone or wireless network. It also can
be supported with existing services without requiring special
devices. Speaker recognition as one of the voice authentication
techniques has been studied for several decades. There are
however still several problems which affect real-world applica-
tions, such as acoustic mismatch, quality of the training data,
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Fig. 1. Speaker authentication approaches.

the inconvenience of enrollment, and the creation of a large
database to store all the enrolled speaker patterns. In order to
enhance the speaker authentication technology, we present a
novel approach calledverbal information verification(VIV).
It can be used independently or can be combined with speaker
recognition to provide the convenience to users while achieving
a higher level of security.

To facilitate further discussion, we refer tospeaker authenti-
cationas the general method of automatic authentication based
on a speaker’s voice input. It is the process of authenticating a
user via his/her voice input using pre-stored information. The
information can be in various formats, such as lexical transcrip-
tions, acoustic models, text, subword sequences, etc. As shown
in Fig. 1, speaker authentication can be categorized into two
groups: by speaker’s voice characteristics, as is done in con-
ventional speaker recognition, or by the verbal content of an ut-
terance, which leads to verbal information verification. Speaker
recognition includes speaker verification (SV) and speaker iden-
tification (SID). SV is the process of verifying the claimed iden-
tity of an unknown speaker by comparing the speaker charac-
teristics as encapsulated in spoken input against a pre-stored
speaker-specific model. SID is the process of associating an un-
known speaker with a member of a known population.

When applying the current speaker recognition technology
to real-world applications, several problems were encountered
which motivated our research of VIV [1], [2]. A conventional
speaker recognition system needs an enrollment session to col-
lect data for training a speaker-dependent (SD) model. Enroll-
ment is an inconvenience to the user as well as the system de-
veloper who often has to supervise and ensure the quality of
the collected data. The accuracy of the collected training data
is critical to the performance of an SV system. Even a true
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Fig. 2. An example of verbal information verification by asking sequential questions. (Similar sequential tests can also be applied to speaker verification and
other biometric or multi-modality verification.)

speaker might make a mistake when repeating the training ut-
terances/pass-phrases for several times. Furthermore, as we dis-
cussed in [3], since the enrollment and testing voice may come
from different telephone handsets and networks, there may exist
an acoustic mismatch between the training and testing environ-
ments. The SD models trained on the data collected in one en-
rollment session may not perform well when the test session is in
a different environment or via a different transmission channel.
The mismatch significantly affects the SV performance. To al-
leviate the above problems, we proposed the concept and algo-
rithm of VIV.

VIV is the process of verifying spoken utterances against
the information stored in a given personal data profile. A VIV
system may use a dialogue procedure to verify a user by asking
questions. An example of a VIV system is shown in Fig. 2. It
is similar to a typical tele-banking procedure: after an account
number is provided, the operator verifies the user by asking
some personal information, such as mother’s maiden name,
birth date, address, home telephone number, etc. The user must
answer the questions correctly in order to gain access to his/her
account. To automate the whole procedure, the questions can be
prompted by a text-to-speech system (TTS) or by pre-recorded
messages.

The major difference between speaker recognition and VIV in
speaker authentication is that a speaker recognition system uti-
lizes a speaker’s voice characteristics represented by the speech
feature vectors while a VIV system mainly inspects the verbal
content in the speech signal.

The difference can be further addressed in the following
three aspects. First, in a speaker recognition system, for

either SID or SV, we need to train speaker-dependent (SD)
models while in VIV, we usually use statistical models with
associated acoustic-phonetic identities. Second, a speaker
recognition system needs to enroll a new user and to train
the SD model while a VIV system does not need such an
enrollment. A user’s personal data profile is created when
the user’s account is set up. Finally, in speaker recognition,
the system has the ability to reject an imposter when the
input utterance contains a legitimate pass-phrase but fails
to match the pre-trained SD model. In VIV, it is solely
the user’s responsibility to protect his or her own personal
information because no speaker-specific voice characteristics
are used in the verification process. However, in real appli-
cations, there are several ways to avoid impostors using a
speaker’s personal information by monitoring a particular
session. A VIV system can ask for some information that
may not be a constant from one session to another, e.g.,
the amount or date of the last deposit; or a subset of the
registered personal information, e.g., a VIV system can
require a user to register pieces of personal information

, and each time only randomly ask questions
. Furthermore, as we are going to present in

Section V, a VIV system can be migrated to an SV system
as indicated by the dash line in Fig. 1. In particular, VIV
can be used to facilitate automatic enrollment for SV.

The rest of the paper is organized as follows. In Section II, we
present the algorithms of single utterance verification. In Sec-
tion III, we propose a sequential utterance verification algorithm
for VIV. Section IV gives the experimental results of VIV. Sec-
tion V presents speaker authentication by combining VIV with
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Fig. 3. Utterance verification in VIV.

SV and the experimental results, followed by the conclusions in
Section VI.

II. SINGLE UTTERANCE VERIFICATION

There are two ways to verify a single spoken utterance for
VIV: by automatic speech recognition (ASR) or by utterance
verification. With ASR, the spoken input is transcribed into a
sequence of words. The transcribed words are then compared
to the information pre-stored in the claimed speaker’s personal
profile. With utterance verification, the spoken input is verified
against an expected sequence of word or subword models which
is taken from a personal data profile of the claimed individual.
Based on our experience [1] and the analysis in Section III, the
utterance verification approach can give us much better perfor-
mance than the ASR approach. Therefore, we focus our discus-
sion only on utterance verification approach in this study.

The idea of utterance verification for computing confidence
scores was used in keyword sporting and nonkeyword rejec-
tion (e.g., [4]–[10]). A similar concept can also be found in
fixed-phrase speaker verification [11], [12], [3] and in VIV [1],
[2]. A block diagram of a typical utterance verification for VIV
is shown in Fig. 3. The three key modules, utterance segmen-
tation by forced decoding, subword testing and utterance level
confidence scoring, are described in detail in the following sub-
sections.

A. Utterance Segmentation

When a user opens an account, some of his or her key infor-
mation is registered in a personal profile. Each piece of the key
information is represented by a sequence of words,, which
in turn is equivalently characterized by a concatenation of a se-
quence of phones or subwords, , where , is the th
subword and is the total number of subwords in the key word
sequence.

Since the VIV system only prompts one single question at
a time, the system knows the expected key information to the
prompted question and the corresponding subword sequence.
We then apply the subword models in the same
order of the subword sequenceto decode the answer utterance.

This process is known as forced decoding or forced alignment,
in which the Viterbi algorithm is employed to determine the
maximum likelihood segmentations of the subwords, i.e.

(1)

where

(2)

is a set of segmented feature vectors associated with subwords,
are the end frame numbers of each subword

segments respectively, and is the segmented
sequence of observations corresponding to subwordfrom
frame number to frame number , where and

.

B. Subword Hypothesis Testing

Given a decoded subword, in an observed speech segment
we need a decision rule by which we assign the subword

to either hypotheses or . Following the definition in [8],
means that observed speech consists of the actual sound

of subword , and , is the alternative hypothesis. For the
binary-testing problem, one of the most useful test for decision
is theNeyman–Pearsonlemma [13]–[15]. For a given number
of observations , the most powerful test, which minimizes the
error for one class while maintaining the error for the other class
constant, is a likelihood ratio test,

(3)

where and are the target HMM and corresponding
anti-HMMs for subword unit respectively. The target
model, , is trained using the data of subword ; the cor-
responding anti-model, is trained using the data of a set of
subwords which is highly confused with subword [8],
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i.e., , . The log likelihood ratio (LLR) for
subword is

(4)

For normalization, an average frame LLR, , is defined as

(5)

where is the length of the speech segment. For each subword,
a decision can be made by

Acceptance: ;
Rejection:

(6)

where either a subword-dependent threshold value or
a common threshold can be determined numerically or
experimentally.

Here, we applied the concept ofNeyman–Pearsonlemma to
utterance verification but we have to note that the lemma was
not originally developed for HMM testing. Actually, the lemma
is originally a test between twopdfs, which is equivalent to test
the hypothesis in one HMM state. In the above test, we assume
the independence among all HMM states and among all sub-
words. Therefore, the above test can be interpreted as applying
theNeyman–Pearsonlemma in every state, then combining the
scores together as the final average LLR score.

C. Confidence Measures

For an utterance level decision, we have to define a function
to combine the results of subword tests. A confidence measure

for a key utterance can be represented as

(7)

where is the function to combine the LLR’s of all subwords
in the key utterance.

Several confidence measures have been proposed for utter-
ance verification (e.g., [6], [7]). We denote two of them as
and in the following:

(8)

where is the total number of nonsilence subwords in the ut-
terance, and is the total number of frames of the nonsilent
portion of the utterance, i.e., . Furthermore,

(9)

Here, , is an average score over all frames and all sub-
words. Each of the subword score is weighted by its dura-
tion. is an average LLR of all subwords and independent of
individual duration. We note that silence models are used in the
forced alignment for utterance segmentation but only nonsilence
subwords are involved in computing the confidence measures.

For VIV, we defined a different confidence measure,, for
two reasons. First, as reported in [6] and from our experiments,

the above confidence measures have a large dynamic range.
A preferable statistic should have a stable, limited numerical
range, so that a common threshold can be determined for all
subwords for simplicity. Second, decision thresholds should be
determined to meet specifications in different applications. It
is desirable to be able to relate the design specifications with
the computed confidence measure. Again, the above confidence
measures can not meet these requirements.

A useful design specification is the percentage of acceptable
subwords in a key utterance. We then need to make a decision
at both the subword and the utterance levels. At the subword
level, a likelihood-ratio test can be conducted to reach a decision
on acceptance or rejection of each subword; at the utterance
level, a simple utterance score can be computed to represent the
percentage of acceptable subwords.

To make a decision on the subword level, we need to deter-
mine the threshold for each of the subword tests. If we have
the training data for each subword model and the corresponding
anti-subword model, this is not a problem. However, in many
cases, the data may not be available. Therefore, we need to
define a test which can give us the convenience to determine
the thresholds without using the training data. For subword
which is characterized by a model, , we define

(10)

where means the target score is larger than
the anti-score and vice versa. Furthermore, we define anormal-
ized confidence measurefor an utterance with subwords as

(11)

where

if ;
otherwise.

(12)

is in a fixed range of . Due to the normaliza-
tion in (10), is a subword-independent threshold which can be
determined separately. A subword is accepted and counted as
part of the utterance confidence measure only if itsscore is
greater than or equal to the threshold value. Thus, can be
interpreted as the percentage of acceptable subwords in an ut-
terance; e.g. implies that 80% of the subwords in the
utterance are acceptable. Therefore, an utterance threshold can
be determined or adjusted based on the specifications of system
performance and robustness.

III. SEQUENTIAL UTTERANCE VERIFICATION

The above single utterance test strategy can be extended to a
sequence of subtests which is similar to thestep-down procedure
in statistics [16]. Each of the subtests is an independent single-
utterance verification. As soon as a subtest calls for rejection,

is chosen and the procedure is terminated; if no subtest leads
to rejection, is accepted, i.e., the user is accepted.
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Let be the target hypothesis in which all the answered
utterances match the key information in the profile. We have

(13)

where is the total number of subtests, and is a compo-
nent target hypothesis in theth subtest corresponding to theth
utterance. The alternative hypothesis is

(14)

where is a component alternative hypothesis corre-
sponding to the th subtest. We assume the independence
among subtests. On theth subtest, a decision can be made on

Acceptance: ;
Rejection:

(15)

where and are the confidence score and the corre-
sponding threshold for utterance, respectively.

As is well known, when performing a test, one may commit
one of two types of error: rejecting the hypothesis when it is
true—false rejection(FR), or accepting it when it is false—false
acceptance(FA). We denote the FR and FA error rates asand

, respectively. Anequal-error rate(EER), , is defined when
the two error rates are equal in a system, i.e., .
For a sequential test, we extend the definitions of error rates as
follows.

Definition 1: False rejection error on utterances
is the error when the system rejects a correct response in any
one of hypothesis subtests.

Definition 2: False acceptance error on utterances
is the error when the system accepts an incorrect set of re-

sponses after all of hypothesis subtests.
Definition 3: Equal-error rate on utterancesis the rate at

which the false rejection error rate and the false acceptance error
rate on utterances are equal.

We denote the above FR and FA error rates onutterances
as and , respectively. Let be
the region of confidence scores of theth subtest, where
is the region of confidence scores which satisfy
from which we accept , and is the region of scores
which satisfy from which we accept .

The FR and FA errors for subtestcan be represented as the
following conditional probabilities

(16)

and

(17)

respectively. Furthermore, the FR error onutterances can be
evaluated as

(18)

and the FA error on utterances is

(19)

Equations (18) and (19) indicate an important property
of the sequential test defined above: the more the subtests,
the less the FA error and the larger the FR error. Therefore,
we can have the following strategy in a VIV system design:
starting from the first subtest, we first set the threshold value
such that the FR error rate for the subtest,, is close to zero
or a small number corresponding to design specifications,
then add more subtests in the same way until meeting the
required system FA error rate, , or reaching the maximum
numbers of allowed subtests.

It is reasonable to arrange the subtests in the order of de-
scending importance and decreasing subtest error rates. In other
words, the system first prompts users with the most important
question or with the subtest which we know has larger FR error

. Therefore, if a speaker is falsely rejected, the session can
be restarted right away with little inconvenience to the user.

Equation (18) also indicates the reason that an ASR approach
would not perform very well in a sequential test. Although ASR
can give us low FR error, , on each of the individual sub-
tests, the overall FR error on utterances , , can
still be very high. In the proposed utterance verification ap-
proach, we make the FR on each individual subtest close to zero
by adjusting the threshold value while controlling the overall FA
error by adding more subtests until reaching the design specifi-
cations. We use the following examples to show the above con-
cept.

Example 1: A bank operator usually asks two kinds of per-
sonal questions while verifying a customer. When automatic
VIV is applied to the procedure, the average individual error
rates on these two subtests are , ; and

, , respectively. Then, from (18) and
(19), we know that the system FR and FA errors on a sequen-
tial test are , and . If the bank
wants to further reduce the FA error, one additional subtest can
be added to the sequential test. Suppose the additional subtest
has and . The overall system error
rates will be and .

Example 2: A security system requires and
. It is known that each subtest can have

, and by adjusting the thresholds. In this case,
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we need to determine the number of subtests,, to meet the
design specifications. From (19), we have

Then, the actual system FA rate on three subtests is
; the FR rate on three tests is .

Therefore, three subtests can meet the required performance on
both FR and FA.

IV. VIV E XPERIMENTAL RESULTS

In the following experiments, the VIV system verifies
speakers by three sequential subtests, i.e., . The system
performance with various decision thresholds will be evaluated
and compared.

A. Database, Features, and Models

The experimental database includes 100 speakers. Each
speaker gave three utterances as the answers to the following
three questions:

“In which year were you born?”
“In which city and state did you grow up?” and
“May I have your telephone number, please?”
This is a biased database. Twenty six percent (26%) of the

speakers have birth year in the 1950s; 24% are in the 1960s.
There is only one digit different among those birth years. In city
and state names, 39% are “New Jersey,” and 5% of the speakers
used exactly the same answer “Murray Hill, New Jersey.” Thirty
eight percent (38%) of the telephone numbers start from “908
582 ,” which means that at least 60% of the digits in their
answer for the telephone number are identical. Also, some of
the speakers have foreign accent, and some cities and states are
in foreign countries.

In the experiments, a speaker was considered as a true speaker
when the speaker’s utterances were verified against his or her
data profile. The same speaker was considered as an impostor
when the utterances were verified against other speakers’ pro-
files. Thus, for each true speaker, we have three utterances from
the speaker and utterances from other 99 speakers as im-
postors.

The speech signal was sampled at 8 kHz and pre-emphasized
using a first-order filter with a coefficient of 0.97. The samples
were blocked into overlapping frames of 30 ms in duration and
updated at 10 ms intervals. Each frame was windowed with a
Hamming window. The cepstrum was derived from a tenth order
LPC analysis. The feature vector consisted of 39 features in-
cluding 12 cepstral coefficients, 12 delta cepstral coefficients,
12 delta-delta cepstral coefficients, energy, delta energy, and
delta-delta energy [17].

The models used in evaluating the subword verification
scores were a set of 1117 right context-dependent HMMs as the
target phone models [18], and a set of 41 context-independent
anti-phone HMMs as anti-models [8].

B. VIV by Sequential Utterance Verification

In the following experiments, the sequential utterance verifi-
cation approach presented in Sections II and III were evaluated.

Fig. 4. Error rates when verifying three sequential utterances using a single SI
threshold and confidence measureM .

All performances reported below are the overall performance on
three questions as defined in Section III.

For a VIV system with multiple subtests, either one global
threshold, i.e., , or multiple thresholds, i.e.,

, , can be used. The thresholds can be either context
(key information) dependent or context independent. They can
also be either speaker dependent or speaker independent. We
discuss the threshold issues in the following.

1) Single Speaker-Independent Threshold:When a single
SI threshold was applied to all speakers and all questions, the
error rates in false rejection and false acceptance were obtained
by varying the threshold value. As shown in Fig. 4, we have less
than 1% equal-error rate when using confidence measurede-
fined in (11). Other confidence measures, e.g.,, can also give
us less than 1% equal-error rates [1], but their thresholds can not
be determined or adjusted based on design specifications, which
is a basic requirement for the VIV system. Therefore, we focus
our experiments on only.

2) Two Speaker-Independent Thresholds:For robust
sequential verification, we define the logic of using two
speaker-independent and context-dependent thresholds for a
multiple-question trial as follows:

when at the first time
otherwise

(20)

where and are two threshold values; and are
the values of confidence measure and threshold, respectively, for
the th subtest. Equation (20) means can be used only once
during the sequential trial. Thus, if a true speaker has only one
lower score in a sequential test, the speaker still has the chance
to pass the overall verification trial. This is useful in noisy en-
vironments or for speakers who may not speak consistently.
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When the above two thresholds were applied to VIV testing,
the system performance was improved from the single threshold
test, as shown in Table I. The minimal false acceptance rates in
the table were obtained by adjusting the thresholds while main-
taining the false rejection rates to be 0%. As we can see from
the table, the thresholds for have limited ranges ,

and clear physical meanings: i.e. and
imply that 69% and 84% of phones are acceptable,

respectively.
3) Robust Intervals:Due to the variations in voice charac-

teristics, channels, and environment, a speaker may have var-
ious test scores, even for utterances of the same text. We define
a robust interval, , to characterize the variation and the system
robustness

(21)

where is an original context-dependent utterance threshold
as defined in (15), and is the adjusted threshold value. The
robust interval, , is equivalent to the tolerance in the test score
to accommodate fluctuation due to variations in environments
or speaker’s conditions.

In system evaluation, can be reported with error rates as an
allowed tolerance; or it can be used to determine the thresholds
based on system specifications. For example, a bank authenti-
cation system may need a smallerto ensure a lower false ac-
ceptance rate for a higher security level while a voice messaging
system may select a largerfor a lower false rejection rate to
avoid user frustration.

4) Speaker-Dependent Thresholds:To further improve the
performance, a VIV system can start from a speaker-indepen-
dent threshold, then switch to speaker- and context-dependent
thresholds after the system has been used for several times by a
user.

To ensure no false rejection, the upper bound of the threshold
for subtest of a speaker can be selected as

(22)

where is the confidence score for utteranceon the
th trial, and is the total number of trials that the speaker has

performed on the same context of utterance.
In this case, we have three thresholds associated with the three

questions for each speaker. Following the design strategy pro-
posed in Section III, the thresholds were determined by first esti-
mating as in (22) to guarantee 0% false rejection rate. Then,
the thresholds were shifted to evaluate the false acceptance rate
on different robust intervals as defined in (21). The relation
between robust interval and false acceptance rates on three ques-
tions using normalized confidence measure is shown in Fig. 5,
where the horizontal axis indicates the changes of the values of
robust interval . The three curves represent the performance of
a VIV system using one to three questions for speaker authen-
tication while maintaining false rejection rate to be 0%. An en-
larged graph of the performance for the cases of two and three
subtests is shown in Fig. 6. We note that the threshold adjust-
ment is made on per-speaker, per-question situation although
the plot in Fig. 6 is the overall performance for all speakers.

From the figures, we can see that using one question test, we
cannot obtain a 0% equal-error rate. Using two questions, we

TABLE I
COMPARISON ON TWO AND SINGLE

THRESHOLDTESTS

Fig. 5. False acceptance rate as a function of robust interval with SD threshold
for a 0% false rejection rate. The horizontal axis indicates the shifts of the values
of the robust interval� .

Fig. 6. An enlarged graph of the system performances using two and three
questions.

have a 0% equal-error rate but with no tolerance (i.e., robust in-
terval ). With three questions, the VIV system gave 0%
equal-error rate with 6% robust interval, which means when a
true speaker’s utterance scores are 6% lower than before (e.g.,
due to variations in telephone quality), the speaker can still be
accepted while all impostors in the database can be rejected
correctly. This robust interval gives room for variation in the
true speaker’s score to ensure robust performance of the system.



592 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 5, SEPTEMBER 2000

TABLE II
SUMMARY OF THE EXPERIMENTAL RESULTS ONVERBAL INFORMATION VERIFICATION

Fig. 6 also implies that three questions are necessary to obtain a
0% false acceptance in the experiment.

A practical VIV system may apply SI thresholds to a new user
and switch to SD thresholds after the user access the system
successfully for a few times. The thresholds can also be up-
dated based on the recent scores to accommodate the changes
of speaker’s voice and environment.

A summary of VIV for speaker authentication is shown in
Table II. In the utterance verification approach, when SD thresh-
olds are set for each key information field, we achieved 0% av-
erage individual equal-error rate with a 6% robust interval.

V. SPEAKER AUTHENTICATION BY COMBINING VIV WITH

SPEAKER VERIFICATION

In the above sections, we have introduced VIV as an indepen-
dent authentication method. In this section, we combine VIV
with traditional speaker verification to construct a new speaker
authentication system, which is more convenient to users with
better performance by solving or mitigating the problems in en-
rollment, training data verification, and acoustic mismatch as
discussed in Section I.

A. VIV for the Automatic Enrollment of Speaker Verification

A conventional SV system is shown in Fig. 7. It involves two
kinds of sessions, enrollment and test. In an enrollment session,
an identity, such as an account number, is assigned to a speaker,
and the speaker is asked to select a spoken pass-phrase, e.g.,
a connected digit string or a phrase. The system then prompts
the speaker to repeat the pass-phrase for several times, and an
SD HMM is constructed based on the utterances collected in
the enrollment session. In a test session, the speaker’s test utter-
ance is compared against the pre-trained, SD HMM model. The
speaker is accepted if the likelihood-ratio score exceeds a preset
threshold; otherwise the speaker is rejected.

The proposed approach [2] is shown in Fig. 8, where VIV is
involved in the enrollment and one of the key utterances in VIV
is the pass-phrase which will be used in SV later. During the first
4–5 accesses, the user is verified by a VIV system. The verified
pass-phrase utterances are recorded and later used to train an
SD HMM for SV. At this point, the authentication process can
be switched from VIV to SV.

There are several advantages to the combined system. First,
the approach is convenient to users since it does not need a
formal enrollment session and a user can start to use the system
right after his/her account is opened. Second, the acoustic mis-
match problem is mitigated since the training data are from
different sessions, potentially via different handsets and chan-
nels. Third, the quality of the training data are ensured since the
training phrases are verified by VIV before establishing the SD

Fig. 7. Conventional speaker verification system.

Fig. 8. Proposed system by combining VIV with speaker verification.

HMM for the pass-phrase. Finally, once the system switches to
SV, it would be difficult for an impostor to access the account
even if the imposter knows the true speaker’s pass-phrase.

B. Fixed-Phrase Speaker Verification

The details of a fixed-phrase SV system can be found in
[12]. A block diagram of the test session used in our evalua-
tion is shown in Fig. 9. After the speaker claims the identity, the
system expects the same phrase obtained in the training session.
First, an SI phone recognizer is applied to find the end-points
by forced alignment. Then, cepstral mean subtraction (CMS) is
conducted to reduce the acoustic mismatch.

In the block of target score computation of Fig. 9, the feature
vectors are decoded into states by the Viterbi algorithm, using
the whole-phrase model trained by the VIV-verified utterances.
A log-likelihood score for the target model, i.e. the target score,
is calculated as

(23)
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Fig. 9. Fixed-phrase speaker verification system.

where
set of feature vectors;
total number of vectors;
target model;
likelihood score from the Viterbi decoding.

In the block of the background score computation, a set of
SI HMMs in the order of the transcribed phoneme sequence,

, is applied to align an input utterance with
the expected transcription using the Viterbi decoding algorithm.
The segmented utterance is , where
is the set of feature vectors corresponding to theth phoneme,

, in the phoneme sequence. There are different ways to com-
pute the likelihood score for the background (alternative) model.
Here, we apply the background score proposed in [12]

(24)

where
set of SI phoneme models, in the order of the
transcribed phoneme sequence;
phoneme likelihood score;
total number of phonemes.

The SI models are trained from a different database by the EM
algorithm [12]. In real implementation, the SI model can be the
same one as used in VIV.

The target and background scores are then used in the fol-
lowing likelihood-ratio test [12]

(25)

where and are defined in (23) and (24) re-
spectively.

A final decision on rejection or acceptance is made based
on comparing in (25) with a threshold. As pointed in [12],
if a significantly different phrase is given, the phrase could be
rejected by the SI phone alignment before using the verifier.

C. Features and Database

The feature vector for SV is composed of 12 cepstral and 12
delta-cepstral coefficients since it is not necessary to use the
39 features for SV. The cepstrum is derived from a 10th order
LPC analysis over a 30 ms window and the feature vectors are
updated at 10 ms intervals [12].

The experimental database consists of fixed phrase utterances
recorded over the long distance telephone network by 100
speakers, 51 male and 49 female. The fixed phrase, common to
all speakers, is “I pledge allegiance to the flag” with an average
length of 2 seconds. We assume the fixed phrase is one of the
verified utterances in VIV. Five utterances of the pass-phrase
recorded from five separate VIV sessions are used to train an
SD HMM, thus the training data are collected from different
acoustic environments and telephone channels at different time.
We assume all the collected utterances have been verified by
VIV to ensure the quality of the training data.

For testing, we used 40 utterances recorded from a true
speaker in different sessions, and 192 utterances recorded
from 50 impostors of the same gender in different sessions.
For model adaptation, the second, fourth, sixth, and eighth
test utterances from the tested true speaker are used to update
the associated HMM for verifying subsequent test utterances
incrementally [12].

The SD target models for the phrases are left-to-right HMMs.
The number of states are dependent on the total number of
phones in the phrases. There are four Gaussian components
associated with each state [12]. The background models are
concatenated SI phone HMMs trained on a telephone speech
database from different speakers and texts [11]. There are 43
phonemes HMMs and each model has three states with 32
Gaussian components associated with each state.

Due to unreliable variance estimates from a limited amount
of speaker-specific training data, a global variance estimate was
used as the common variance to all Gaussian components in the
target models [12].

D. Experimental Results on Using VIV for SV Enrollment

In Section IV, we have reported the experimental results of
VIV on 100 speakers. The system had 0% error rates when
three questions were tested by sequential utterance verification.
Therefore, we assume that all the training utterances collected
by VIV are correct. Actually, since we are using a pre-verified
database, we have to make the assumption. In other words, in
the following experiment, we cannot show the improvement by
ensuring the quality of the training data by VIV but the improve-
ment by reducing the acoustic mismatch.
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The SV experimental results without and with adaptation are
listed in Tables III and IV for the 100 speakers respectively.
The numbers are in the average percentage of individual equal-
error rate (EER). The first data column lists the EERs using
individual thresholds and the second data column lists the EERs
using common (pooled) thresholds for all tested speakers.

The baseline system is the conventional SV system in which
a single enrollment session is used. The proposed system is the
combined system in which VIV is used for the automatic en-
rollment for SV. After the VIV system is used for five times by
collecting training utterances from five different sessions, it then
switches over to an SV system. The test utterances for both the
baseline and the proposed system are the same.

Without adaptation, the baseline system has an EER of 3.03%
and 4.96% for individual and pooled thresholds respectively,
while the proposed system has an EER of 1.59% and 2.89%,
respectively. With adaptation as defined in the last subsection,
the baseline system has an EER of 2.15% and 3.12%, while the
proposed system has an EER of 1.20% and 1.83%, respectively.
The proposed system without adaptation has an even lower EER
than the baseline system with adaptation. This is because the SD
models in the proposed system were trained using the data from
different sessions while the baseline system just performs an
incremental adaptation without reconstructing the models after
collecting more data.

The experimental results indicate several advantages of the
proposed system. First, since VIV can provide the training
data from different sessions representing different channel en-
vironments, we can do significantly better than one training
session. Second, although we can adapt the models originally
trained by the data collected in one session, the proposed
system still does better. This is due to the fact that a new
model constructed by multi-session training data is more ac-
curate than by incremental adaptation using the multi-ses-
sion data. Lastly, in real-world applications, all the utterances
used in training and adaptation can be verified by VIV be-
fore training or adaptation. Although this advantage cannot
be observed in this database evaluation, it is critical in any
real-world application since even a true speaker may make a
mistake while uttering a pass-phrase. The mistake will never
be corrected once involved in model training or adaptation.
VIV can protect the system from wrong training data.

In this section, we only proposed one configuration on com-
bined VIV with SV. For different applications, different kinds
of combinations and integration can be designed to meet dif-
ferent specifications. For example, VIV can be employed in SV
to verify a user before the user’s data is used for SD model adap-
tation; both the VIV and SV system can share the same set of
SI models and the decoding scores from VIV can be used in SV
as the background score; etc.

VI. CONCLUSIONS

In this paper, we presented automatic verbal information
verification for user authentication. It is to verify speakers by
verbal content instead of voice characteristics. We also pro-
posed a sequential utterance verification solution to VIV with a

TABLE III
EXPERIMENTAL RESULTSWITHOUT ADAPTION IN AVERAGE EQUAL-ERROR

RATES

TABLE IV
EXPERIMENTAL RESULTS WITHADAPTION IN AVERAGE EQUAL-ERRORRATES

system design procedure. Given the number of test utterances
(subtests), the procedure can help us to design a system with
minimal overall error rate; given a limit on the error rate,
the procedure can find out how many subtests are needed to
obtain the expected accuracy. In a VIV experiment with three
questions prompted and tested sequentially, the proposed VIV
system achieved 0% equal-error rate with 6% robust interval
on 100 speakers when SD utterance thresholds were applied.
However, since VIV is to verify the verbal content instead of
the voice characteristics, it is users’ responsibility to protect
their personal information from impostors. The sequential
verification technique can also be applied to other biometric
verification systems, or multi-modality verification systems in
which more than one verification methods can be employed,
such as voice plus fingerprint verification, or other kinds of
configurations.

To improve the user convenience and system perfor-
mance, we further combined verbal information verification
and speaker verification to construct a convenient speaker
authentication system. In the system, VIV is used to
verify users in the first few accesses. Simultaneously,
the system collects verified training data for constructing
SD models. Later, the system migrates to an SV system
for authentication. The combined system is convenient to
users since they can start to use the system without going
through a formal enrollment session and waiting for model
training. However, it is still the user’s responsibility to
protect his or her personal information from impostors until
the SD model is trained and the system is migrated to an
SV system. After the migration, an impostor would have
difficulties to access the account event if the pass-phrase
is known. On the other hand, since the training data
could be collected from different channels in different
VIV sessions, the acoustic mismatch problem is mitigated,
potentially leading to a better system performance in test
sessions. The SD HMMs can be updated to cover different
acoustic environments while the system is in use to further
improve the system performance. Our experiments showed
that the combined speaker authentication system improved
SV performance by more than 40% compared to that of
a conventional SV system by just mitigating the acoustic
mismatch. VIV can also be used to ensure training data
for SV. Although the advantage cannot be shown in the
experiments, it is critical to real-world applications.
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