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Abstract—Traditional speaker authentication focuses on
speaker verification (SV) and speaker identification, which is

accomplished by matching the speaker’'s voice with his or her
registered speech patterns. In this paper, we propose a new
technique, verbal information verification (VIV), in which spoken

Speaker Authentication

utterances of a claimed speaker are verified against the key (usu- Speaker Recognition Verbal Information
ally confidential) information in the speaker’s registered profile .~ Verification
automatically to decide whether the claimed identity should be (Authentication by (Authentication by
accepted or rejected. Using the proposed sequential procedure speech characteristics) verbal content)
involving three question-response turns, we achieved an error-free
result in a telephone speaker authentication experiment with 100
speakers.

We further propose a speaker authentication system by com- Speaker Speaker

bining VIV with SV. In the system, a user is verified by VIV

in the first four to five accesses, usually from different acoustic
environments. During these uses, one of the key questions pertains
to a pass-phrase for SV. The VIV system collects and verifies the Fig. 1. Speaker authentication approaches.

pass-phrase utterance for use as training data for speaker model

construction. After a speaker-dependent model is constructed,

the system then migrates to SV. This approach avoids the incon- the inconvenience of enrollment, and the creation of a large
venience of a formal enroliment procedure, ensures the quality yaahase to store all the enrolled speaker patterns. In order to

of the training data for SV, and mitigates the mismatch caused h th K thentication technol i
by different acoustic environments between training and testing. enhance the speaker authentication technology, we present a

Experiments showed that the proposed system improved the SV Novel approach callegterbal information verification(VIV).
performance by over 40% in equal-error rate compared to a It can be used independently or can be combined with speaker

Verification | |Identification

conventional SV system. recognition to provide the convenience to users while achieving
Index Terms—Speaker authentication, speaker recognition, a higher level of security.

speaker verification, utterance verification, verbal information To facilitate further discussion, we refergpeaker authenti-

verification.

cationas the general method of automatic authentication based
on a speaker’s voice input. It is the process of authenticating a
|. INTRODUCTION user via his/her voice input using pre-stored information. The

O ENSURE broper access to private information. perso in(ormation can be in various formats, such as lexical transcrip-
I = prop . P P .r}"f‘ons, acoustic models, text, subword sequences, etc. As shown
transactions, and security of computer and communica- _. S . .
in Fig. 1, speaker authentication can be categorized into two

tion networks, automatic user identification or authenticati?é\

is necessary. Among various kinds of authentication metho foups: by speaker's voice characteristics, as is done in con-
Y- 9 v}’ntional speaker recognition, or by the verbal content of an ut-

:%Cnha?uigo;?neé(fras;mo?rjiie,pf\;Sno dngLfsgt'gfcat'?/giQgﬁbtire(l;l'?l {ancg,_whjch leads to verbal infqrmgtion verification. Spe.aker
convenier,1t one beca,use,it is easy to’ pro.(,juce capture %cgogmﬂonmclude; speakerverlflcatlop (SV) and speakgrlden-
transmit over the telephone or wireless networly<. It also c%ﬁ ation (SID). SVis the process of verlfylng the claimed iden-
be supported with existing services without requiring s eci%Ey. OT an unknown speake_r by comparing the §peaker charac-
Supp 9 €d 9 sp ristics as encapsulated in spoken input against a pre-stored
devices. Speaker recognition as one of the voice aUthem'Catéo'?eaker-specific model. SID is the process of associating an un-
technigues has been studied for several decades. Therek r '

) . €L 4Gwn speaker with a member of a known population.
however still several problems which affect real-world applica- When applying the current speaker recognition technology
tions, such as acoustic mismatch, quality of the training da%a

0'real-world applications, several problems were encountered
which motivated our research of VIV [1], [2]. A conventional
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{ *‘In which year were you born ?”’ l

i

| Get and verify the answer utterance. |

Correct Wrong

' “‘In which city/state did you grow up 7’ Rejection

¥

’ Get and verify the answer utterance. I

Correct

Rejection

{ ‘‘May I have your telephone number, please 7’ |

i

| Get and verify the answer utterance. |

Correct Wrong

Acceptance

Rejection
on 3 utterances

Fig. 2. An example of verbal information verification by asking sequential questions. (Similar sequential tests can also be applied to speatien eef
other biometric or multi-modality verification.)

speaker might make a mistake when repeating the training aither SID or SV, we need to train speaker-dependent (SD)
terances/pass-phrases for several times. Furthermore, as werdidels while in VIV, we usually use statistical models with
cussed in [3], since the enrollment and testing voice may corassociated acoustic-phonetic identities. Second, a speaker
from different telephone handsets and networks, there may exetognition system needs to enroll a new user and to train
an acoustic mismatch between the training and testing envirehe SD model while a VIV system does not need such an
ments. The SD models trained on the data collected in one enrollment. A user’'s personal data profile is created when
rollment session may not perform well when the test session ighe user’'s account is set up. Finally, in speaker recognition,
a different environment or via a different transmission channg¢he system has the ability to reject an imposter when the
The mismatch significantly affects the SV performance. To alhput utterance contains a legitimate pass-phrase but fails
leviate the above problems, we proposed the concept and aligo-match the pre-trained SD model. In VIV, it is solely
rithm of VIV. the user's responsibility to protect his or her own personal
VIV is the process of verifying spoken utterances againstformation because no speaker-specific voice characteristics
the information stored in a given personal data profile. A VI\Are used in the verification process. However, in real appli-
system may use a dialogue procedure to verify a user by askaadions, there are several ways to avoid impostors using a
qguestions. An example of a VIV system is shown in Fig. 2. Bpeaker’s personal information by monitoring a particular
is similar to a typical tele-banking procedure: after an accousgssion. A VIV system can ask for some information that
number is provided, the operator verifies the user by askingay not be a constant from one session to another, e.g.,
some personal information, such as mother’s maiden nartitee amount or date of the last deposit; or a subset of the
birth date, address, home telephone number, etc. The user megistered personal information, e.g., a VIV system can
answer the questions correctly in order to gain access to his/hegjuire a user to registeV pieces of personal information
account. To automate the whole procedure, the questions carf§e > 1), and each time only randomly ask questions
prompted by a text-to-speech system (TTS) or by pre-recordgd< n < N). Furthermore, as we are going to present in
messages. Section V, a VIV system can be migrated to an SV system
The major difference between speaker recognition and VIV as indicated by the dash line in Fig. 1. In particular, VIV
speaker authentication is that a speaker recognition system céin be used to facilitate automatic enrollment for SV.
lizes a speaker’s voice characteristics represented by the speedte rest of the paper is organized as follows. In Section I, we
feature vectors while a VIV system mainly inspects the verbptesent the algorithms of single utterance verification. In Sec-
content in the speech signal. tion I1l, we propose a sequential utterance verification algorithm
The difference can be further addressed in the followirfgr VIV. Section IV gives the experimental results of VIV. Sec-
three aspects. First, in a speaker recognition system, fim V presents speaker authentication by combining VIV with
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: Phone/subword
Igfggy transcription for
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S”“"S"u Target likelihoods
PO (|2 ) ...PO |2 y)
Pass-utterance Forced ™ Confidence | Scores
- -
"Murray Hill” Decoding Phone Anti Measure
boundaries likelihoods
! ,
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Fig. 3. Utterance verification in VIV.

SV and the experimental results, followed by the conclusionsTihis process is known as forced decoding or forced alignment,
Section VI. in which the Viterbi algorithm is employed to determine the
maximum likelihood segmentations of the subwords, i.e.

[I. SINGLE UTTERANCE VERIFICATION . .
) i P(O|S) = max P(O'|S1) P (07 ,4]S2)
There are two ways to verify a single spoken utterance for ti,ta, oty

VIV: by automatic speech recognition (ASR) or by utterance ...p (OEN +1|5N) 1)
verification. With ASR, the spoken input is transcribed into a v

sequence of words. The transcribed words are then compaggfbre

to the information pre-stored in the claimed speaker’s personal

profile. With utterance verification, the spoken input is verified O = {01, O,, ---, Oy} = {Oil7 Op 1, Ofﬁ,ﬁl}
against an expected sequence of word or subword models which )
is taken from a personal data profile of the claimed individual.

Based on our experience [1] and the analysis in Section Ill, he, gt of segmented feature vectors associated with subwords,
utterance verification approach can give us much better perfor-, ¢x are the end frame numbers of each subword

mance than the ASR approach. Therefore, we focus our discggg%’ems respectively, ai@, = O is the segmented
' = Yt

sion only on utterance verification approach in this study. sequence of observations corresponding to subwigrdrom

The idea of utterance verification for computing confidencg, e numbet . + 1 to frame numbet,,, wheret; > 1 and
scores was used in keyword sporting and nonkeyword rej%c— " " -

tion (e.g., [4]-[10]). A similar concept can also be found in’
fixed-phrase speaker verification [11], [12], [3] and in VIV [1],5  subword Hypothesis Testing

[2]. A block diagram of a typical utterance verification for VIV ) _
is shown in Fig. 3. The three key modules, utterance segmen®!ven & decoded subworf,, in an observed speech segment

tation by forced decoding, subword testing and utterance lefét W€ need a decision rule by which we assign the subword

confidence scoring, are described in detail in the following suff2 €ither hypothese, or H,. Following the definition in [8],
sections. Hy means that observed sped&gh consists of the actual sound

of subwords,,, and Hy, is the alternative hypothesis. For the
binary-testing problem, one of the most useful test for decision
is the Neyman—Pearsolemma [13]-[15]. For a given number
When a user opens an account, some of his or her key infgfppservationgs, the most powerful test, which minimizes the

mation is registered in a personal profile. Each piece of the kgitor for one class while maintaining the error for the other class
information is represented by a sequence of woiswhich  constant, is a likelihood ratio test,

in turn is equivalently characterized by a concatenation of a se-
quence of phones or subwordss,, }\_, , whereS,,, is thenth (0,) = P(On|Ho) _ P(On|\n) 3)
subword andV is the total number of subwords in the key word " P(Oy|H) P (On|An)
sequence.

Since the VIV system only prompts one single question athere A\, and )\, are the target HMM and corresponding
a time, the system knows the expected key information to thati-HMMs for subword units,, respectively. The target
prompted question and the corresponding subword sequencenodel, A,,, is trained using the data of subwo§&j; the cor-
We then apply the subword models, - --, Ay in the same responding anti-model,, is trained using the data of a set of
order of the subword sequeng§é¢o decode the answer utterancesubwordsS which is highly confused with subword,, [8],

> ti_1.

A. Utterance Segmentation
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i.e., S, C {S;},i # n. The log likelihood ratio (LLR) for the above confidence measures have a large dynamic range.

subwords,, is A preferable statistic should have a stable, limited numerical
_ range, so that a common threshold can be determined for all
R(0,) =1log P(O,|\,) —log P (O |A,) . (4)  subwords for simplicity. Second, decision thresholds should be

determined to meet specifications in different applications. It
is desirable to be able to relate the design specifications with
1 _ the computed confidence measure. Again, the above confidence
I [log P(O,|\n) — log P (On[ X)) ()  measures can not meet these requirements.

A useful design specification is the percentage of acceptable
wherel,, is the length of the speech segment. For each subwoggibwords in a key utterance. We then need to make a decision
a decision can be made by at both the subword and the utterance levels. At the subword

Acceptance: R, > T,: level, alikelihood-ratig te_st can be conducted to reach a decision
{Rejection' ' R" < T"’ (6) on acceptance or rejection of each subword; at the utterance
' " " level, a simple utterance score can be computed to represent the
where either a subword-dependent threshold valye or Percentage of acceptable subwords.
a common threshold’ can be determined numerically or To make a decision on the subword level, we need to deter-
experimentally. mine the threshold for each of the subword tests. If we have
Here, we applied the concept Neyman—Pearsolemma to the training data for each subword model and the corresponding
utterance verification but we have to note that the lemma w@gti-subword model, this is not a problem. However, in many
not originally developed for HMM testing. Actually, the lemma~ases, the data may not be available. Therefore, we need to
is originally a test between twadfs which is equivalent to test define a test Whi_ch can give us the_ c_:onvenience to determine
the hypothesis in one HMM state. In the above test, we assufig thresholds without using the training data. For subvfrd
the independence among all HMM states and among all si#Pich is characterized by a model,, we define
words. Therefore, the above test can be interpreted as applying
the Neyman—Pearsolemma in every state, then combining the
scores together as the final average LLR score.

For normalization, an average frame LLR,, is defined as

R, =

. log P(Op|Ay) — log P (O"|X")

C, =5
log P(O,[X,)

(10)

C. Confidence Measures wherelog P(O,|).) # 0 means the target score is larger than

For an utterance level decision, we have to define a functithe anti-score and vice versa. Furthermore, we defimermal-
to combine the results of subword tests. A confidence measiged confidence measui@r an utterance wittV subwords as
M for a key utterancé® can be represented as

M(O) = F(Ry, Ry, -+, Ry) @) M= % > H(C) (11)
whereF is the function to combine the LLR’s of all subwords =
in the key utterance. where
Several confidence measures have been proposed for utter- _
ance verification (e.g., [6], [7]). We denote two of them/ds F(C) = { L if G, 29, (12)
and M, in the following: ™ 0, otherwise.

1N M is in a fixed range of) < M < 1. Due to the normaliza-
My = I Z LR, (8) tionin (10),0is a subword-independent threshold which can be
n=1 determined separately. A subword is accepted and counted as

wherelV is the total number of nonsilence subwords in the up_art of the utterance confidence measure only iLlisscore is

terance, and. is the total number of frames of the nonsilen?nrtee ?ﬁ;:ggg:rtﬁguaelri%::: tzrgfsggiivizihgjbﬂvgofgg igean ut-
portion of the utterance, i.el, = 3" 1,,. Furthermore, P P g P

terance; e.gM = 0.8 implies that 80% of the subwords in the
1N utterance are acceptable. Therefore, an utterance threshold can
My = N Z R,. (9) be determined or adjusted based on the specifications of system
n=1 performance and robustness.

Here, M, is an average score over all frames and all sub-
words. Each of the subword scak, is weighted by its dura-
tion. M, is an average LLR of all subwords and independent of The above single utterance test strategy can be extended to a
individual duration. We note that silence models are used in teequence of subtests which is similar toskep-down procedure
forced alignment for utterance segmentation but only nonsilenicestatistics [16]. Each of the subtests is an independent single-
subwords are involved in computing the confidence measuregtterance verification. As soon as a subtest calls for rejection,

For VIV, we defined a different confidence measuté, for H; is chosen and the procedure is terminated; if no subtest leads
two reasons. First, as reported in [6] and from our experiments,rejection,H, is accepted, i.e., the user is accepted.

I1l. SEQUENTIAL UTTERANCE VERIFICATION
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Let H, be the target hypothesis in which all the answera@spectively. Furthermore, the FR error .dmutterances can be
utterances match the key information in the profile. We have evaluated as

(13)
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(8)) (18)

where.J is the total number of subtests, afd(¢) is a compo-
nent target hypothesis in thith subtest corresponding to tfte
utterance. The alternative hypothesis is

N
Il
—

and the FA error oy utterances is

J

Hy = L__jl Hy(i) 14) E,(J)=P <ﬂ {M() e Ro(i)}‘ H1> = H eali).

(19)

where Hy(¢) is a component alternative hypothesis corre-

sponding to theith subtest. We assume the independenceEquations (18) and (19) indicate an important property
among subtests. On thith subtest, a decision can be made orof the sequential test defined above: the more the subtests,
the less the FA error and the larger the FR error. Therefore,

) ) we can have the following strategy in a VIV system design:

{Acgep'Fance: M) 2 T(i); (15) starting from the first subtest, we first set the threshold value

Rejection: M (i) < T(i) such that the FR error rate for the subtest,is close to zero

or a small number corresponding to design specifications,
e;hen add more subtests in the same way until meeting the

whereM (i) andT’(¢) are the confidence score and the corr . . .
@ @) required system FA error raté;,, or reaching the maximum

sponding threshold for utteranc¢erespectively.
As is well known, when performing a test, one may commﬂum.bers of allowed subtests. .

one of two types of error: rejecting the hypothesis when it is It IS ree_lsonable to arrange the_ subtests in the order of de-

true—ralse rejectior(FR), or accepting itwhen it is falsefaise scending importance and decreasing subtest error rates. In other

acceptancéFA). We denote the FR and FA error ratesaand words, the system first prompts users with the most important
.., respectively. Arequal-error rate(EER), ¢, is defined when question or with the subtest which we know has larger FR error

the two error rates are equal in a system, kg.— e, = ¢ e-(t). Therefore, if a speaker is falsely rejected, the session can
For a sequential test, we extend the definitions of error ratesbaesEreSta_rtEd right away W'th little inconvenience to the user.
guation (18) also indicates the reason that an ASR approach

follows. Id not perf I tial test. Although ASR
Definition 1: False rejection error ory utteranceg.J > 1) would not perlorm very well ina sequential test. AAlthoug
give us low FR errog,.(¢), on each of the individual sub-

is the error when the system rejects a correct response in %ﬁy
: y ) P ests, the overall FR error oh utterances=,.(J), J > 1, can
one of J hypothesis subtests. . ; e
still be very high. In the proposed utterance verification ap-

Definition 2: False acceptance error oh utterancegJ > S
1) is the error when the system accepts an incorrect set of égach, we make the FR on each individual subtest close to zero
sponses after all of hypothesis subtests y adjusting the threshold value while controlling the overall FA
) error by adding more subtests until reaching the design specifi-

Definition 3: Equal-error rate on/ utterancess the rate at ons. Wi the following examples to show the above con
which the false rejection error rate and the false acceptance eff EJ(t) S. Ve use the foflowing examples to show the above con-

5
cep
rate onJ utterances are equal.

Example 1: A bank operator usually asks two kinds of per-
We denote the above FR and FA error rates/outterances . . o .
. sonal questions while verifying a customer. When automatic
asE.(J)andFE,(J), respectively. Lef); = R1(¢) U Ro(i) be ques while verifying a cu y !

the region of confidence scores of thh subtest, wher®o(s) VIV is applied to the procedure, the average individual error

) ) . . : 1) = 0.1%, £,(1) = 5%;
is the region of confidence scores which satidfy(i) > T°(¢) rates on these two subtests ayel ) = 0.1%, <(1) %; and

. ,~ N : e.(2) = 0.2%, €,(2) = 6%, respectively. Then, from (18) and
\flflz?;r‘}"’:;g&'&?;iggg%ésrzdvﬁﬁég \';;giéggg?(gf scores (19), we know that the system FR and FA errors on a sequen-

) tial test areF.(2) = 0.3%, and £,(2) = 0.3%. If the bank
The FR and FA errors for subtestan be represented as th, nis to further reduce the FA error, one additional subtest can
following conditional probabilities be added to the sequential test. Suppose the additional subtest
hase,.(3) = 0.3% ande,(3) = 7%. The overall system error
) ) ) ) rates will beFE,.(3) = 0.6% and E, = 0.021%.
en(t) = P(M(3) € Ra(9)[Ho(2)), (16) Example 2: A(\ s)ecurity system requires,.(.J) < 0.03% and
and E.(J) < 0.2%. It is known that each subtest can haye<
eq(t) = P(M(i) € Ro(4)|H1(%)) (17) 0.01%, ande, < 12% by adjusting the thresholds. In this case,
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we need to determine the number of subtedisto meet the 6 ' '

design specifications. From (19), we have

;_ [losEa] _ [log0.002] _ o of RSP R R SR S
10g€a 10g0.12 : : : : :

Then, the actual system FA rate on three subtests,is= : ; ; : :
017% S02%, the FR rate OnthreeteStS&(Zi) :003% A4 ............. .............
Therefore, three subtests can meet the required performance : : : :
both FR and FA.

[

IV. VIV E XPERIMENTAL RESULTS

False acceptance

In the following experiments, the VIV system verifies
speakers by three sequential subtests, J.e5 3. The system 2
performance with various decision thresholds will be evaluate
and compared.

A. Database, Features, and Models

The experimental database includes 100 speakers. Ee . , _
speaker gave three utterances as the answers to the follow 0, ; 2 3 . s o
three questions: False rejection (%)

“In which year were you born?”

“In which city and state did you grow up?” and

“May | have your telephone number, please?”

This is a biased database. Twenty six percent (26%) of the
speakers have birth year in the 1950s; 24% are in the 1966g_performa_1nces repor.ted b.elow ar'e the overall performance on
There is only one digit different among those birth years. In Ciﬁl)ree questions as deﬂ_ned in _Secﬂon i. )
and state names, 39% are “New Jersey,” and 5% of the speakeéor a Vly system wlth mult|p!e subtests, elth_er ong global
used exactly the same answer “Murray Hill, New Jersey.” Thiriireshold, i.e.I” = T'(¢), or multiple thresholds, i.e7'(¢) #

eight percent (38%) of the telephone numbers start from “9dg./) ¢ 7 J, can be used. The thresholds can be either context
582..," which means that at least 60% of the digits in theifrkey information) dependent or context independent. They can

answer for the telephone number are identical. Also, some o be either speaker dependent or speaker independent. We

the speakers have foreign accent, and some cities and state§5@/SS the threshold issues in the following. _
in foreign countries. 1) Single Speaker-Independent Thresholdhen a single

In the experiments, a speaker was considered as a true spesképreshold was applied to all speakers and all questions, the

when the speaker's utterances were verified against his or guor rates in false rejection and false acceptance were obtained
arying the threshold value. As shown in Fig. 4, we have less

data profile. The same speaker was considered as an impoQ%Y i X

when the utterances were verified against other speakers’ pfen 1% equal-error rate when using confidence medgtde-

files. Thus, for each true speaker, we have three utterances frigifd in (11). Other confidence measures, elg, can also give

the speaker an@h x 3 utterances from other 99 speakers as inHs less tha_n 1% equ_al-error rates [1], but_thelrthrg_sho_lds can r_10t

postors. be determined or adjusted based on design specifications, which
The speech signal was sampled at 8 kHz and pre-emphasi%@l basic.requirement for the VIV system. Therefore, we focus

using a first-order filter with a coefficient of 0.97. The samplegur experiments od/ only.

were blocked into overlapping frames of 30 ms in duration and2) TW0 Speaker-independent  Thresholéar  robust

updated at 10 ms intervals. Each frame was windowed witrgauential verification, we define the logic of using two

Hamming window. The cepstrum was derived from a tenth ordgp€aker-independent and context-dependent thresholds for a

LPC analysis. The feature vector consisted of 39 features [RultiPle-question trial as follows:

cluding 12 cepstral coefficients, 12 delta cepstral coefficients, {Tr,, whenTy, < M(i) < Ty at the first time

Fig. 4. Error rates when verifying three sequential utterances using a single Sl
threshold and confidence measure

12 delta-delta cepstral coefficients, energy, delta energy, and/’(é) =
delta-delta energy [17].
The models used in evaluating the subword verification

scores were a set of 1117 right context-dependent HMMs as {hgere7; and7}; are two threshold valuesy/ (i) andT'(:) are
target phone models [18], and a set of 41 context-independgd values of confidence measure and threshold, respectively, for
anti-phone HMMs as anti-models [8]. theith subtest. Equation (20) meafis can be used only once
during the sequential trial. Thus, if a true speaker has only one
lower score in a sequential test, the speaker still has the chance
In the following experiments, the sequential utterance verifio pass the overall verification trial. This is useful in noisy en-
cation approach presented in Sections Il and Il were evaluatgdonments or for speakers who may not speak consistently.

Ty, otherwise
(20)

B. VIV by Sequential Utterance Verification
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When the above two thresholds were applied to VIV testing,
the system performance was improved from the single threshold
test, as shown in Table I. The minimal false acceptance rates in

TABLE |

591

COMPARISON ON TWO AND SINGLE
THRESHOLD TESTS

the table were obtained by adjusting the thresholds while main- No. of 51 Error rates on Threshold
taining the false rejection rates to be 0%. As we can see from _thresholds o thgeg;;t;f;ncez s g;luTes -

i wo = U. (] = U.U% L=U09 1 =0V
the table, the thresholds fdd have limited range8.0 < 77, Single FA = 0.75% FR = 1.0% T = 0.89

Ty < 1.0 and clear physical meanings: i, = 0.69 and
Ty = 0.84 imply that 69% and 84% of phones are acceptable,
respectively.

3) Robust Intervals:Due to the variations in voice charac-
teristics, channels, and environment, a speaker may have \.3y
ious test scores, even for utterances of the same text. We de &
arobust interva) 7, to characterize the variation and the systel g g3or
robustness

7(i)
whereT'(i) is an original context-dependent utterance thresho g
as defined in (15), and (:) is the adjusted threshold value. The g B1s
robust intervaly, is equivalent to the tolerance in the test scor £ 2
to accommodate fluctuation due to variations in environmer g 10
or speaker’s conditions.

In system evaluation, can be reported with error rates as al
allowed tolerance; or it can be used to determine the thresho
based on system specifications. For example, a bank authe
cation system may need a smalteto ensure a lower false ac-
ceptance rate for a higher security level while a voice messagmg
system may select a largerfor a lower false rejection rate 10 0., 5% cceplanceate s unclonof ot nervel wih S0 treshol
avoid user frustration. of the robust intervat-.

4) Speaker-Dependent Thresholdo further improve the
performance, a VIV system can start from a speaker-indepe~,
dent threshold, then switch to speaker- and context-depend
thresholds after the system has been used for several times |
user.

To ensure no false rejection, the upper bound of the threshi
for subtest of a speaker can be selected as

T(i) < min{M (i, j)},

40 ! ! ! ! ! ' ! ' ‘
: e 1 subtest

;,.;‘;...Z.S,the,sis..: S

T 3subtests : |

n
o

=T() -, 0<7<T(t) (21)

utterance verific:

20

-1 4 -12 -10 —8 -6 -4
Robust interval for speaker dependent thresholds (%)

-16

T T T T T T T T T

- - Zsubtests
— 3subtests o

25

I (22

where M (i, j) is the confidence score for utterancen the
jth trial, and! is the total number of trials that the speaker hs
performed on the same context of utterance
Inthis case, we have three thresholds associated with the th g 1
questions for each speaker. Following the design strategy p g
posed in Section IIl, the thresholds were determined by firstes £ o5
matingZ’(¢) asin (22) to guarantee 0% false rejection rate. The-
the thresholds were shifted to evaluate the false acceptance
on different robust intervals as defined in (21). The relation
between robust interval and false acceptance rates on three ques-
tions using normalized confidence measure is shown in Fig. Fig. 6. An enlarged graph of the system performances using two and three
where the horizontal axis indicates the changes of the valuedggstons:
robust interval-. The three curves represent the performance of
a VIV system using one to three questions for speaker auth&ave a 0% equal-error rate but with no tolerance (i.e., robust in-
tication while maintaining false rejection rate to be 0%. An erterval = = 0). With three questions, the VIV system gave 0%
larged graph of the performance for the cases of two and thesgual-error rate with 6% robust interval, which means when a
subtests is shown in Fig. 6. We note that the threshold adjustie speaker’s utterance scores are 6% lower than before (e.g.,
ment is made on per-speaker, per-question situation althowdyte to variations in telephone quality), the speaker can still be
the plot in Fig. 6 is the overall performance for all speakers. accepted while all impostors in the database can be rejected
From the figures, we can see that using one question test, eagrectly. This robust interval gives room for variation in the
cannot obtain a 0% equal-error rate. Using two questions, Wwae speaker’s score to ensure robust performance of the system.

j:l,"',

eptance with utterance verification(%)

0 1] i 1 1 + + 1 1 1
-20 -16 -14  -12  -10 -8 -6 -4
Robust interval for speaker dependent thresholds (%)
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TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS ONVERBAL INFORMATION VERIFICATION
Approaches False False Accuracy | Robust
Rejection | Acceptance Interval
Sequential Utterance 0% 0% 100% 6%
Verification

{Tested on 100 speakers with 3 questions while speaker-dependent thresholds were applied.)

Fig. 6 also implies that three questions are necessary to obtain éTraining Utterances: MM Speaker-Dependent HMM
o . )
0% false acceptance in the experiment. " Open Sesame’"|  Training
A practical VIV system may apply Sl thresholds to a new user * Open Sesame” Database

. Enrollment Sessi
successfully for a few times. The thresholds can also be up- ______________ e e | |

Test Session

and switch to SD thresholds after the user access the systeny~ Open Sesame’ if

dated based on the recent scores to accommodate the change

of speaker’s voice and environment. Identity Claim
A summary of VIV for speaker authentication is shown in

Table Il. In the utterance verification approach, when SD thresh- Test Utterance:

olds are set for each key information field, we achieved 0% av- ~©pen Sesame”

erage individual equal-error rate with a 6% robust interval.

Speaker Scores
. =
Verifier

Fig. 7. Conventional speaker verification system.

V. SPEAKER AUTHENTICATION BY COMBINING VIV WITH Pass-phrases of the first few accesses:
SPEAKER VERIFICATION " Open Sesame” Save for training

" " Verbal
Inthe above sections, we have introduced VIV as an indepen- ~ %P S84 | 1y formation ﬁ

" Open Sesame” | Verification

dent authentication method. In this section, we combine VIV
. L. e . Verified pass-phrases
with traditional speaker verification to construct a new speaker for training
authentication system, which is more convenient to users with
better performance by solving or mitigating the problems in en- Automatic Enrollment Tﬁ%ﬁg
rollment, training data verification, and acoustic mismatch as
discussed in Section I. Speaker-dependent
HMM
A. VIV for the Automatic Enrollment of Speaker Verification -~ Speaker Verificaiton ;Ej'ﬁa;;b;;e “““
A conventional SV system is shown in Fig. 7. It invOIVES tWO  [entity claim

kinds of sessions, enroliment and test. In an enroliment session,
an identity, such as an account number, is assigned to a speaker,
and the speaker is asked to select a spoken pass-phrase, e.g
a connected digit string or a phrase. The system then prompts
the speaker to repeat the pass-phrase for several times, and 419 8. Proposed system by combining VIV with speaker verification.

SD HMM is constructed based on the utterances collected in

the enrollment session. In a test session, the speaker’s test uttM for the pass-phrase. Finally, once the system switches to
ance is compared against the pre-trained, SD HMM model. TRY. it would be difficult for an impostor to access the account
speaker is accepted if the likelihood-ratio score exceeds a pred@n if the imposter knows the true speaker’s pass-phrase.
threshold; otherwise the speaker is rejected.

The proposed approach [2] is shown in Fig. 8, where VIV i
involved in the enroliment and one of the key utterances in VIV The details of a fixed-phrase SV system can be found in
is the pass-phrase which will be used in SV later. During the firkk2]. A block diagram of the test session used in our evalua-
4-5 accesses, the user is verified by a VIV system. The verifiiein is shown in Fig. 9. After the speaker claims the identity, the
pass-phrase utterances are recorded and later used to traifystem expects the same phrase obtained in the training session.
SD HMM for SV. At this point, the authentication process cahirst, an SI phone recognizer is applied to find the end-points
be switched from VIV to SV. by forced alignment. Then, cepstral mean subtraction (CMS) is

There are several advantages to the combined system. Fiefjducted to reduce the acoustic mismatch.
the approach is convenient to users since it does not need ¥ the block of target score computation of Fig. 9, the feature
formal enrolliment session and a user can start to use the sysuggfors are decoded into states by the Viterbi algorithm, using
right after his/her account is opened. Second, the acoustic il whole-phrase model trained by the VIV-verified utterances.
match problem is mitigated since the training data are froflog-likelihood score for the target model, i.e. the target score,
different sessions, potentially via different handsets and chas-calculated as
nels. Third, the quality of the training data are ensured since the L(O, A) = Nif log P(O[A,) (23)

Scores
fP———————

Test pass-phrase: Speaker
" Open Sesame” Verifier

@. Fixed-Phrase Speaker Verification

training phrases are verified by VIV before establishing the SD
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Database
Identity Q Speaker-dependent model
claim B ‘
Phoneme T S L(O, Ay)
Transcription .| largetscore
Computation +
Feature Forced Cepstral Mean Decision
Vectors Alignment | | Subtraction | | A Threshold
Background
? Score
Computation
Speaker-independent KO, Ap)
phoneme models t
Background models
Fig. 9. Fixed-phrase speaker verification system.
where The experimental database consists of fixed phrase utterances
o set of feature vectors; recorded over the long distance telephone network by 100
Ny total number of vectors; speakers, 51 male and 49 female. The fixed phrase, common to
Ay target model; all speakers, is “I pledge allegiance to the flag” with an average
P(O|A:) likelihood score from the Viterbi decoding. length of 2 seconds. We assume the fixed phrase is one of the

In the block of the background score computation, a set wérified utterances in VIV. Five utterances of the pass-phrase
S| HMMs in the order of the transcribed phoneme sequencecorded from five separate VIV sessions are used to train an
Ay ={\1, -+, Ak}, is applied to align an input utterance withSD HMM, thus the training data are collected from different
the expected transcription using the Viterbi decoding algorithracoustic environments and telephone channels at different time.
The segmented utterance@ = {04, ---, Ok}, whereO; We assume all the collected utterances have been verified by
is the set of feature vectors corresponding toithephoneme, VIV to ensure the quality of the training data.

S;, in the phoneme sequence. There are different ways to comfor testing, we used 40 utterances recorded from a true
pute the likelihood score for the background (alternative) modgbeaker in different sessions, and 192 utterances recorded

Here, we apply the background score proposed in [12] from 50 impostors of the same gender in different sessions.
K For model adaptation, the second, fourth, sixth, and eighth
L(O, Ay) = — Zbg P(O;| M) (24) test utterances from the tested true speaker are used to update
Ny im1 the associated HMM for verifying subsequent test utterances
where incrementally [12].
Ay = set of S| phoneme models, in the order of the The SD target models for the phrases are left-to-right HMMs.
e, M transcribed phoneme sequence; The number of states are dependent on the total number of
P(O;| M) phoneme likelihood score; phones in the phrases. There are four Gaussian components
K total number of phonemes. associated with each state [12]. The background models are

The SI models are trained from a different database by the EMncatenated SI phone HMMs trained on a telephone speech
algorithm [12]. In real implementation, the S| model can be tHéatabase from different speakers and texts [11]. There are 43

same one as used in VIV. phonemes HMMs and each model has three states with 32
The target and background scores are then used in the feRUssian components associated with each state.
lowing likelihood-ratio test [12] Due to unreliable variance estimates from a limited amount
of speaker-specific training data, a global variance estimate was
R(O; Ay; M) = L(O; Ay) = L(O, As) (25)  used as the common variance to all Gaussian components in the
whereL(0, A,) andL(O, A,) are defined in (23) and (24) re-target models [12].
spectively.

A final decision on rejection or acceptance is made basgf Experimental Results on Using VIV for SV Enroliment
on comparingR in (25) with a threshold. As pointed in [12],

if a significantly different phrase is given, the phrase could be In Section IV, we have reported the experimental results of
rejected by the SI phone alignment before using the verifier. VIV on 100 speakers. The system had 0% error rates when
three questions were tested by sequential utterance verification.
C. Features and Database Therefore, we assume that all the training utterances collected
The feature vector for SV is composed of 12 cepstral and b2 VIV are correct. Actually, since we are using a pre-verified
delta-cepstral coefficients since it is not necessary to use tieabase, we have to make the assumption. In other words, in
39 features for SV. The cepstrum is derived from a 10th ordtre following experiment, we cannot show the improvement by
LPC analysis over a 30 ms window and the feature vectors amsuring the quality of the training data by VIV but the improve-
updated at 10 ms intervals [12]. ment by reducing the acoustic mismatch.
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The SV experimental results without and with adaptation are TABLE I
listed in Tables Il and IV for the 100 speakers respectivelyEXPERlMENTAL RESULTS WITHOUT ADAPTION IN AVERAGE EQUAL-ERROR

. . .o RATES
The numbers are in the average percentage of individual equal-
error rate (EER). The first data column lists the EERs usinc_Algorithms Individual Thresholds | Pooled Thresholds
individual thresholds and the second data column lists the EER 3V (Baseline) 3.03% 4.96 %
using common (pooled) thresholds for all tested speakers. ~ —AY+5V(proposed) 1.59 % 289 %
The baseline system is the conventional SV system in which
a single enrollment session is used. The proposed system is the TABLE IV

combined system in which VIV is used for the automatiC €nexperIMENTAL RESULTS WITHADAPTION IN AVERAGE EQUAL-ERRORRATES
roliment for SV. After the VIV system is used for five times by : _
collecting training utterances from five different sessions, it ther ?éggigfne) Ind‘“d‘;‘agg%h"lds POOle‘; gf;fhdds
swncr_\es over to an SV system. The test utterances for both tF 1, +SV(proposed) 1.20 % 1.83 %
baseline and the proposed system are the same.
Without adaptation, the baseline system has an EER of 3.03%
and 4.96% for individual and pooled thresholds respectivelyystem design procedure. Given the number of test utterances
while the proposed system has an EER of 1.59% and 2.89%%ubtests), the procedure can help us to design a system with
respectively. With adaptation as defined in the last subsectigninimal overall error rate; given a limit on the error rate,
the baseline system has an EER of 2.15% and 3.12%, while the procedure can find out how many subtests are needed to
proposed system has an EER of 1.20% and 1.83%, respectivehtain the expected accuracy. In a VIV experiment with three
The proposed system without adaptation has an even lower EfiiRstions prompted and tested sequentially, the proposed VIV
than the baseline system with adaptation. This is because thesyBtem achieved 0% equal-error rate with 6% robust interval
models in the proposed system were trained using the data from100 speakers when SD utterance thresholds were applied.
different sessions while the baseline system just performs ldowever, since VIV is to verify the verbal content instead of
incremental adaptation without reconstructing the models aftée voice characteristics, it is users’ responsibility to protect
collecting more data. their personal information from impostors. The sequential
The experimental results indicate several advantages of tleification technique can also be applied to other biometric
proposed system. First, since VIV can provide the trainingerification systems, or multi-modality verification systems in
data from different sessions representing different channel @hich more than one verification methods can be employed,
vironments, we can do significantly better than one trainirguch as voice plus fingerprint verification, or other kinds of
session. Second, although we can adapt the models originaiyfigurations.
trained by the data collected in one session, the proposedo improve the user convenience and system perfor-
system still does better. This is due to the fact that a nawance, we further combined verbal information verification
model constructed by multi-session training data is more asnd speaker verification to construct a convenient speaker
curate than by incremental adaptation using the multi-sefithentication system. In the system, VIV is used to
sion data. Lastly, in real-world applications, all the utterancegrify users in the first few accesses. Simultaneously,
used in training and adaptation can be verified by VIV bahe system collects verified training data for constructing
fore training or adaptation. Although this advantage cann8D models. Later, the system migrates to an SV system
be observed in this database evaluation, it is critical in afigr authentication. The combined system is convenient to
real-world application since even a true speaker may makeisers since they can start to use the system without going
mistake while uttering a pass-phrase. The mistake will nevéirough a formal enrollment session and waiting for model
be corrected once involved in model training or adaptatiotraining. However, it is still the user's responsibility to
VIV can protect the system from wrong training data. protect his or her personal information from impostors until
In this section, we only proposed one configuration on conthe SD model is trained and the system is migrated to an
bined VIV with SV. For different applications, different kindsSV system. After the migration, an impostor would have
of combinations and integration can be designed to meet diifficulties to access the account event if the pass-phrase
ferent specifications. For example, VIV can be employed in S known. On the other hand, since the training data
to verify a user before the user’s data is used for SD model adapuld be collected from different channels in different
tation; both the VIV and SV system can share the same set\a¥/ sessions, the acoustic mismatch problem is mitigated,
Sl models and the decoding scores from VIV can be used in $¥dtentially leading to a better system performance in test
as the background score; etc. sessions. The SD HMMs can be updated to cover different
acoustic environments while the system is in use to further
improve the system performance. Our experiments showed
VI. CONCLUSIONS that the combined speaker authentication system improved
SV performance by more than 40% compared to that of
In this paper, we presented automatic verbal informatian conventional SV system by just mitigating the acoustic
verification for user authentication. It is to verify speakers bgnismatch. VIV can also be used to ensure training data
verbal content instead of voice characteristics. We also pfor SV. Although the advantage cannot be shown in the
posed a sequential utterance verification solution to VIV withexperiments, it is critical to real-world applications.
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