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Statistical language models used in large-vocabulary speech
recognition must properly encapsulate the various constraints, both
local and global, present in the language. While local constraints
are readily captured throughn-gram modeling, global constraints,
such as long-term semantic dependencies, have been more diffi-
cult to handle within a data-driven formalism. This paper focuses
on the use of latent semantic analysis, a paradigm that automat-
ically uncovers the salient semantic relationships between words
and documents in a given corpus. In this approach, (discrete) words
and documents are mapped onto a (continuous) semantic vector
space, in which familiar clustering techniques can be applied. This
leads to the specification of a powerful framework for automatic
semantic classification, as well as the derivation of several lan-
guage model families with various smoothing properties. Because
of their large-span nature, these language models are well suited
to complement conventionaln-grams. An integrative formulation
is proposed for harnessing this synergy, in which the latent se-
mantic information is used to adjust the standardn-gram proba-
bility. Such hybrid language modeling compares favorably with the
correspondingn-gram baseline: experiments conducted on the Wall
Street Journal domain show a reduction in average word error rate
of over 20%. This paper concludes with a discussion of intrinsic
tradeoffs, such as the influence of training data selection on the re-
sulting performance.

Keywords—Latent semantic analysis, multispan integration,
n-grams, speech recognition, statistical language modeling.

I. INTRODUCTION

Language modeling plays a pivotal role in automatic
speech recognition (ASR). It is variously used to constrain
the acoustic analysis, guide the search through various (par-
tial) text hypotheses, and/or contribute to the determination
of the final transcription [1], [40], [57]. Fundamentally,
its function is to encapsulate as much as possible of the
syntactic, semantic, and pragmatic characteristics for the
task considered. The successful capture of this information
is critical to help determine the most likely sequence of
words spoken because it quantifies which word sequences
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are acceptable in a given language for a given task and
which are not. Thus, language modeling can be thought
of as a way to impose a collection of constraints on word
sequences. In the two past decades, statistical-grams
have steadily emerged as the preferred way to impose such
constraints in a wide range of domains [21]. The reader
is referred to [61] and [72] for a comprehensive overview
of the state-of-the-art in the field, including an insightful
perspective on -grams in light of other techniques, and an
excellent tutorial on challenges lying ahead. Some of these
challenges are further considered below.

A. Locality Problem

The success of an-gram in capturing relevant syntactic,
semantic, and pragmatic information from the training data is
directly related to its ability to suitably discriminate between
different strings of words. This ability is heavily influenced
by two related issues, coverage and estimation. Coverage
hinges on the selection of the underlying vocabulary, with
tradeoffs such as incurring more errors due to unknown
words (low coverage) versus losing accuracy from increased
acoustic confusability (very large vocabulary) [59]. This
paper is more concerned with the estimation issue, which
centers around the choice of. There, the major tradeoff
has to do with settling for weaker predictive power (low)
versus suffering from more unreliable parameter estimates
(higher ) [53]. In practice, parameter reliability demand low
values of (see, e.g., [45] and [54]), which in turn imposes an
artificially local horizon to the language model. As a result,

-grams as typically derived are inherently unable to capture
large-span relationships in the language.

Consider, for instance, predicting the word “fell” from the
word “stocks” in the two equivalent phrases:

stocks fell sharply as a result of the announcement

(1)and

stocks, as a result of the announcement, sharply fell

(2)
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In (1), the prediction can be done with the help of a bigram
language model ( ). This is straightforward with the
kind of resources currently available [58]. In (2), however,
the value would be necessary, a rather unrealistic
proposition at the present time. In large part because of this
inability to reliably capture large-span behavior, the perfor-
mance of conventional -gram technology has essentially
reached a plateau [61], [72].

This observation has sparked interest in a variety of re-
search directions, mostly relying on eitherinformation ag-
gregationorspan extension[11]. Information aggregation in-
creases the reliability of the parameter estimation by taking
advantage of exemplars of other words that behave “like” this
word in the particular context considered. The tradeoff, typ-
ically, is higher robustness at the expense of a loss in reso-
lution. This paper is more closely aligned with span exten-
sion, which extends and/or complements the-gram para-
digm with information extracted from large-span units (i.e.,
comprising a large number of words). The tradeoff here is in
the choice of units considered, which has a direct effect on
the type of long-distance dependencies modeled. These units
tend to be either syntactic or semantic in nature. We now ex-
pand on these two choices.

B. Syntactically Driven Span Extension

Assuming a suitable parser is available for the domain
considered, syntactic information can be used to incorporate
large-span constraints into the recognition. How these con-
straints are incorporated varies from estimating-gram prob-
abilities from grammar-generated data [70] to computing a
linear interpolation of the two models [43]. Most recently,
syntactic information has been used specifically to deter-
mine equivalence classes on the-gram history, resulting
in so-called dependency language models [19], [56], some-
times also referred to as structured language models [20],
[42], [66].

In that framework, each unit is in the form of the headword
of the phrase spanned by the associated parse subtree. The
standard -gram language model is then modified to operate
given the last headwordsas opposed to the last

words. Said another way, the structure of the model is
no longer predetermined: which words serve as predictors
depends on the dependency graph, which is a hidden variable
[61], [72]. In the example above, the top two headwords in
the dependency graph would be “stocks” and “fell” in both
cases, thereby solving the problem.

The main caveat in such modeling is the reliance on the
parser, and particularly the implicit assumption that the cor-
rect parse will in fact be assigned a high probability [69].
The basic framework was recently extended to operate effi-
ciently in a left-to-right manner [20], [42], through careful
optimization of both chart parsing [67] and search modules.
Also noteworthy is a somewhat complementary line of re-
search [68], which exploits the syntactic structure contained
in the sentences prior to the one featuring the word being pre-
dicted.

C. Semantically Driven Span Extension

High-level semantic information can also be used to in-
corporate large-span constraints into the recognition. Since
by nature such information is diffused across the entire text
being created, this requires the definition of adocumentas a
semantically homogeneous set of sentences. Then each docu-
ment can be characterized by drawing from a (possibly large)
set of topics, usually predefined from a hand-labeled hier-
archy, which covers the relevant semantic domain [39], [63],
[64]. The main uncertainty in this approach is the granularity
required in the topic clustering procedure [31]. To illustrate,
in (1) and (2), even perfect knowledge of the general topic
(most likely, “stock market trends”) does not help much.

An alternative solution is to use long distance dependen-
cies between word pairs which show significant correlation
in the training corpus. In the above example, suppose that
the training data reveals a significant correlation between
“stocks” and “fell.” Then the presence of “stocks” in the doc-
ument could automatically trigger “fell,” causing its proba-
bility estimate to change. Because this behavior would occur
in both (1) and in (2), proximity being irrelevant in this kind
of model, the two phrases would lead to the same result. In
this approach, the pair (stocks, fell) is said to form a word
trigger pair [51]. In practice, word pairs with high mutual
information are searched for inside a window of fixed dura-
tion. Unfortunately, trigger pair selection is a complex issue:
different pairs display markedly different behavior, which
limits the potential of low-frequency word triggers [60]. Still,
self-triggers have been shown to be particularly powerful and
robust [51], which underscores the desirability of exploiting
correlations between the current word and features of the
document history.

Recent work has sought to extend the word trigger con-
cept by using a more comprehensive framework to handle
the trigger pair selection [3]–[10], [12], [24], [34], [36]. This
is based on a paradigm originally formulated in the context of
information retrieval, calledlatent semantic analysis(LSA)
[15], [27], [30], [32], [37], [49], [50], [65]. In this paradigm,
co-occurrence analysis still takes place across the span of an
entire document, but every combination of words from the
vocabulary is viewed as a potential trigger combination. This
leads to the systematic integration of long-term semantic de-
pendencies into the analysis.

The concept of document assumes that the available
training data is tagged at the document level, i.e., there is
a way to identify article boundaries. This is the case, for
example, with the ARPA North American Business (NAB)
News corpus [46]. Once this is done, the LSA paradigm can
be used for word and document clustering [12], [34], [36],
as well as for language modeling [3], [6], [24]. In all cases,
it was found to be suitable to capture some of the global
semantic constraints present in the language. In fact, hybrid

-gram LSA language models, constructed by embedding
LSA into the standard -gram formulation, were shown to
result in a substantial reduction in both perplexity [5], [6]
and average word error rate [7]–[10].
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D. Organization

The focus of this paper is on semantically driven span ex-
tension only, and more specifically on how the LSA para-
digm can be exploited to improve statistical language mod-
eling. The main objectives are:

1) to review the data-driven extraction of latent semantic
information;

2) to assess its potential use in the context of spoken lan-
guage processing;

3) to describe its integration with conventional-gram
language modeling;

4) to examine the behavior of the resulting hybrid models
in speech recognition experiments;

5) to discuss a number of factors that influence perfor-
mance.

This paper is organized as follows. In the next two sec-
tions, we give an overview of the mechanics of LSA fea-
ture extraction, as well as the salient characteristics of the
resulting LSA feature space. Section IV explores the appli-
cability of this framework for general semantic classifica-
tion. In Section V, we shift the focus to LSA-based statistical
language modeling for large-vocabulary recognition. Sec-
tion VI describes the various smoothing possibilities avail-
able to make LSA-based language models more robust. In
Section VII, we illustrate some of the benefits associated
with hybrid -gram LSA modeling on a subset of theWall
Street Journal(WSJ) task. Finally, Section VIII discusses the
inherent tradeoffs associated with the approach, as evidenced
by the influence of the data selected to train the LSA com-
ponent of the model.

II. L ATENT SEMANTIC ANALYSIS

Let , , be some underlying vocabulary anda
training text corpus, comprising articles (documents) rel-
evant to some domain of interest (like business news, e.g.,
in the case of the NAB corpus [46]). Typically, and
may be on the order of 10 000 and 100 000, respectively;
might comprise a hundred million words or so. The LSA par-
adigm defines a mapping between the discrete sets, and
a continuous vector space, whereby each word in is
represented by a vector in , and each document in
is represented by a vector in .

A. Feature Extraction

The starting point is the construction of a matrix () of
co-occurrences between words and documents. In marked
contrast with -gram modeling, word order is ignored,
which is of course in line with the semantic nature of the
approach [50]. This makes it an instance of the so-called
“bag-of-words” paradigm, which disregards collocational
information in word strings: the context for each word
essentially becomes the entire document in which it appears.
Thus, the matrix is accumulated from the available
training data by simply keeping track of which word is
found in what document.

This accumulation involves some suitable function of the
word count, i.e., the number of times each word appears in

each document [12]. Various implementations have been in-
vestigated by the information retrieval community (see, e.g.,
[29]). Evidence points to the desirability of normalizing for
document length and word entropy. Thus, a suitable expres-
sion for the cell of is

(3)

where
number of times occurs in ;
total number of words present in;
normalized entropy of in the corpus .

The global weighting implied by reflects the fact that
two words appearing with the same count indo not neces-
sarily convey the same amount of information about the doc-
ument; this is subordinated to the distribution of the words in
the collection .

If we denote by the total number of times
occurs in , the expression for is easily seen to be

(4)

By definition, , with equality if and only if
and , respectively. A value of

close to 1 indicates a word distributed across many docu-
ments throughout the corpus, while a value ofclose to 0
means that the word is present only in a few specific docu-
ments. The global weight is, therefore, a measure of
the indexing power of the word .

B. Singular Value Decomposition

The ( ) word-document matrix resulting from
the above feature extraction defines two vector representa-
tions for the words and the documents. Each wordcan be
uniquely associated with a row vector of dimension, and
each document can be uniquely associated with a column
vector of dimension . Unfortunately, these vector repre-
sentations are unpractical for three related reasons. First, the
dimensions and can be extremely large; second, the
vectors and are typically very sparse; and third, the
two spaces are distinct from one other.

To address these issues, it is useful to employ singular
value decomposition (SVD), a technique closely related to
eigenvector decomposition and factor analysis [35]. We pro-
ceed to perform the (order-) SVD of as follows:

(5)

where
( ) left singular matrix with
row vectors ( );
( ) diagonal matrix of singular
values ;
( ) right singular matrix with
row vectors ( );
order of the decomposition;
matrix transposition.
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Fig. 1. Singular value decomposition (after [44]).

As is well known, both left and right singular matrices
and are column-orthonormal, i.e.,
(the identity matrix of order ). Thus, the column vectors
of and each define an orthonormal basis for the space
of dimension spanned by the (-dimensional) ’s and

’s. Furthermore, it can be shown (see [25]) that the matrix
is the best rank- approximation to the word-document

matrix , for any unitarily invariant norm. This entails, for
any matrix of rank

(6)

where refers to the norm and is the smallest
singular value retained in the order- SVD of . Ob-
viously, if is equal to the rank of .

Following [44], this decomposition can be illustrated as
in Fig. 1. The row vectors of (i.e., words) are projected
onto the orthonormal basis formed by the column vectors of
the right singular matrix , or, equivalently, the row vec-
tors of (top figure). This defines a new representation
for the words, in terms of their coordinates in this projection,

namely, the rows of . In essence, the row vector char-
acterizes the position of word in the underlying -dimen-
sional space, for . Similarly, the column vectors
of (i.e., documents) are projected onto the orthonormal
basis formed by the column vectors of the left singular ma-
trix (middle figure). The coordinates of the documents in
this space are, therefore, given by the columns of . This
in turn means that the column vector , or, equivalently,
the row vector , characterizes the position of document

in dimensions, for . We refer to each of
the scaled vectors as aword vector, uniquely
associated with word in the vocabulary, and each of the

scaled vectors as adocument vector, uniquely
associated with document in the corpus (bottom figure).

C. Interpretation

This amounts to representing each word and each docu-
ment as a linear combination of (hidden) abstract concepts,
which arise automatically from the SVD mechanism [44].
Since the SVD provides, by definition, a parsimonious de-
scription of the linear space spanned by, we can infer that
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this set of abstract concepts is specified tominimallyspan the
words in the vocabulary and the documents in the corpus

. Thus, the dual one-to-one mapping embodied in (5), be-
tween words/documents and word/document vectors, corre-
sponds to an efficient representation of the training data. Es-
sentially, (5) defines a transformation between high-dimen-
sional discrete entities (and ) and a low-dimensional con-
tinuous vector space, the -dimensional space spanned by
the ’s and ’s. The dimension is bounded from above by
the (unknown) rank of the matrix and from below by the
amount of distortion tolerable in the decomposition. Values
of in the range to are typically used
for information retrieval [30]. In the present context, we have
found to work reasonably well.

The basic idea behind (5) is that captures the major
structural associations in and ignores higher order effects.
The “closeness” of vectors in the LSA spaceis, therefore,
determined by the overall pattern of the language used in,
as opposed to specific constructs. Hence, two words whose
representations are “close” (in some suitable metric) tend to
appear in the same kind of documents, whether or not they
actually occur within identical word contexts in those docu-
ments. Conversely, two documents whose representations are
“close” tend to convey the same semantic meaning, whether
or not they contain the same word constructs. Thus, we can
expect that the respective representations of words and doc-
uments that are semantically linked would also be “close” in
the LSA space .

Of course, the optimality of this framework can be de-
bated, since the underlying norm arising from (6) is prob-
ably not the best choice when it comes to linguistic phe-
nomena. Depending on many subtly intertwined factors like
frequency and recency, linguistic co-occurrences may not al-
ways have the same interpretation. When comparing word
counts, for example, observing 100 occurrences versus 99 is
markedly different from observing one versus zero. This has
motivated the investigation of an alternative objective func-
tion based on the Kullback–Leibler divergence [37]. This
approach has the advantage of providing an elegant prob-
abilistic interpretation of (5), at the expense of requiring a
conditional independence assumption on the words and the
documents [38]. This can be viewed as an instance of the fa-
miliar tradeoff between tractability and modeling accuracy.

This caveat notwithstanding, the correspondence between
closeness in LSA space and semantic relatedness is well
documented. In applications such as information retrieval,
filtering, induction, and visualization, the LSA framework
has repeatedly proven remarkably effective in capturing
semantic information [15], [27], [30], [32], [38], [49], [50],
[65].

An illustration of this fundamental behavior was recently
provided in [55], [71], in the context of an (artificial) infor-
mation retrieval task with 20 distinct topics and a vocabulary
of 2000 words. A probabilistic corpus model generated 1000
documents, each 50 to 100 words long. The probability dis-
tribution for each topic was such that 0.95 of its probability
density was equally distributed among topic words, and the

Fig. 2. Improved topic separability in LSA space (after [55], [71]).

remaining 0.05 was equally distributed among all the 2000
words in the vocabulary. The authors of the study measured
the distance between all pairs of documents, both in the orig-
inal space and in the LSA space obtained as above, with

. This leads to the expected distance distributions
depicted in Fig. 2, where a pair of documents is considered
“intratopic” if the two documents were generated from the
same topic and “intertopic” otherwise.

It can be seen that in the LSA space, the average distance
between intertopic pairs stays about the same, while the av-
erage distance between intratopic pairs is dramatically re-
duced. In addition, the standard deviation of the intratopic
distance distribution also becomes substantially smaller. As
a result, separability between intra- and intertopic pairs is
much better in the LSA space than in the original space. Note
that this holds in spite of a sharp increase in the standard devi-
ation of the intertopic distance distribution, which bodes well
for the general applicability of the method. Analogous obser-
vations can be made regarding the distance between words
and/or between words and documents.

D. (Off-Line) Computational Effort

Clearly, classical methods for determining the SVD
of dense matrices (see, e.g., [16]) are not optimal for
large sparse matrices such as. Because these methods
apply orthogonal transformations (Householder or Givens)
directly to the input matrix, they incur excessive fill-in
and thereby require tremendous amounts of memory. In
addition, they compute all the singular values of; but
here , and, therefore, doing so is compu-
tationally wasteful.

Instead, it is more appropriate to solve a sparse symmetric
eigenvalue problem, which can then be used to indirectly
compute the sparse singular value decomposition. Several
suitable iterative algorithms have been proposed by Berry,
based on either the subspace iteration or the Lanczos recur-
sion method [14]. The primary cost of these algorithms lies in
the total number of sparse matrix-vector multiplications re-
quired. Let us denote by the density of , defined as the
total number of nonzero entries in divided by the product

BELLEGARDA: STATISTICAL LANGUAGE MODELING 1283



of its dimensions . Then the total cost in floating-point
operations per iteration is given by [14]

(7)

In a typical case, hovers in the range 0.25% to 0.5%
(see [30]), and the value of is between 100 to 200. This
expression can, therefore, be approximated by

(8)

For the values of and mentioned earlier, this corre-
sponds to a few billion floating-point operations (flops)
per iteration. On any midrange desktop machine (such
as a 400-MHz Apple iMac DV, rated at approximately
60 Mflops), this translates into (up to) a few minutes of
CPU time. As convergence is typically achieved after 100 or
so iterations, the entire decomposition is usually completed
within a matter of hours.

III. LSA FEATURE SPACE

In the continuous vector space obtained above, each
word is represented by the associated word vector
of dimension , , and each document is
represented by the associated document vector of dimension

, . This opens up the opportunity to apply fa-
miliar clustering techniques in, as long as a distance mea-
sure consistent with the SVD formalism is defined on the
vector space. The nice thing about this form of clustering is
that it takes the global context into account, as opposed to
conventional -gram-based clustering methods, which only
consider collocational effects.

Since the matrix embodies, by construction, all struc-
tural associations between words and documents, it follows
that, for a given training corpus, characterizes all
co-occurrences between words, and characterizes
all co-occurrences between documents. Thus, the extent to
which words and have a similar pattern of occurrence
across the entire set of documents can be inferred from the

cell of , and the extent to which documents
and contain a similar pattern of words from the entire
vocabulary can be inferred from the cell of .

A. Word Clustering

Expanding using the SVD expression (5), we
obtain1

(9)

Since is diagonal, this means that the cell of
can be obtained by taking the dot product between theth
and th rows of the matrix , namely, and . We
conclude that a natural metric to consider for the “closeness”

1Henceforth, we ignore the distinction betweenW and ^W . From (6), this
is without loss of generality under the assumption thatR is chosen to be
equal to the rank ofW .

between words is, therefore, the cosine of the angle between
and . Thus

(10)

for any . A value of means
the two words always occur in the same semantic context,
while a value of means the two words are
used in increasingly different semantic contexts. While (10)
does not define abona fidedistance measure in the space,
it easily leads to one. For example, over the interval ,
the measure

(11)

can be readily verified to satisfy the properties of a distance
on .

Once (11) is specified, it is straightforward to proceed with
the clustering of the word vectors, using any of a variety of
algorithms (see, for instance, [2]). Since the number of such
vectors is relatively large, it is advisable to perform this clus-
tering in stages, using, for example, K-means and bottom-up
clustering sequentially. In that case, K-means clustering is
used to obtain a coarse partition of the vocabularyin to
a small set of superclusters. Each supercluster is then itself
partitioned using bottom-up clustering, resulting in a final set
of clusters , . This process can be thought of
as uncovering, in a data-driven fashion, a particular layer of
semantic knowledge in the space.

B. Word Cluster Example

For the purpose of illustration, we recall here the result
of a word clustering experiment originally reported in [6].
A corpus of documents was randomly selected
from the WSJ portion of the NAB corpus. LSA training
was then performed with an underlying vocabulary of

words, and the word vectors in the resulting
LSA space were clustered into 500 disjoint clusters as ex-
plained above. Two representative examples of the clusters
so obtained are shown in Fig. 3.

The first thing to note is that these word clusters com-
prise words with different part of speech, a marked difference
with conventional class -gram techniques (see [53]). This
is a direct consequence of the semantic nature of the deriva-
tion. Second, some obvious words seem to be missing from
the clusters: e.g., the singular noun “drawing” from cluster
1 and the present tense verb “rule” from cluster 2. This is
an instance of a phenomenon calledpolysemy: “drawing”
and “rule” are more likely to appear in the training text with
their alternative meanings (as in “drawing a conclusion” and
“breaking a rule,” respectively), thus resulting in different
cluster assignments. Finally, some words seem to contribute
only marginally to the clusters: e.g., “hysteria” from cluster
1 and “here” from cluster 2. These are the unavoidable out-
liers at the periphery of the clusters.
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Fig. 3. Word cluster example (after [6]).

C. Document Clustering

Proceeding as above, expanding using the SVD
expression (5) yields

(12)

Again, this means that the cell of can be ob-
tained by taking the dot product between theth and th
columns of the matrix , namely, and . As a re-
sult, a natural metric to consider for the “closeness” between
documents is the cosine of the angle betweenand . Thus

(13)

for any . This has the same functional form
as (10), and, therefore, the distance (11) is equally valid for
both word and document clustering.2

Earlier comments regarding clustering implementation
apply here as well. The end result is a set of clusters,

, which can be viewed as representing another
layer of semantic knowledge in the space.

D. Document Cluster Example

An early document clustering experiment using the above
measure was documented in [36]. This work was conducted
on the British National Corpus (BNC), a heterogeneous
corpus that contains a variety of hand-labeled topics. Using
the LSA framework as above, it is possible to partition
BNC into distinct clusters and compare the subdomains so
obtained with the hand-labeled topics provided with the
corpus. This comparison was conducted by evaluating two
different mixture trigram language models: one built using
the LSA subdomains and one built using the hand-labeled
topics. As the perplexities obtained were very similar [36],
this validates the automatic partitioning performed using
LSA.

Some evidence of this behavior is provided in Fig. 4,
which plots the distributions of four of the hand-labeled

2In fact, the measure (11) is precisely the one used in the study reported in
Fig. 2. Thus, the distances on thex axis of Fig. 2 areD(d ; d ) expressed
in radians.

Fig. 4. Document cluster example (after [36]).

BNC topics against the ten-document subdomains automat-
ically derived using LSA. While clearly not matching the
hand-labeling, LSA document clustering in this example
still seems reasonable. In particular, as one would expect,
the distribution for the natural science topic is relatively
close to the distribution for the applied science topic (see
the two solid lines), but quite different from the two other
topic distributions (in dashed lines). From that standpoint,
the data-driven LSA clusters appear to adequately cover the
semantic space.

IV. SEMANTIC CLASSIFICATION

As seen in the previous two sections, the latent semantic
framework has a number of interesting properties, including:

1) a single-vector representation for both words and doc-
uments in the same continuous vector space;

2) an underlying topological structure reflecting semantic
similarity;

3) a well-motivated, natural metric to measure the dis-
tance between words and between documents in that
space;

4) a relatively low dimensionality, which makes clus-
tering meaningful and practical.

These properties can be exploited in several areas of spoken
language processing. In this section, we address the most
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immediate domain of application, which follows directly
from the previous clustering discussion: (data-driven)
semantic classification [4], [18], [22], [33].

A. Framework Extension

Semantic classification refers to the task of determining,
for a given document, which one of several predefined topics
the document is most closely aligned with. In contrast with
the clustering setup discussed above, such a document will
not (normally) have been seen in the training corpus. Hence,
we first need to extend the LSA framework accordingly. As
it turns out, under relatively mild assumptions, finding a rep-
resentation for a new document in the spaceis straightfor-
ward.

Let us denote the new document by, with , where
the tilde symbol reflects the fact that the document was not
part of the training data. First, we construct a feature vector
containing, for each word in the underlying vocabulary, the
weighted counts (3) with . This feature vector , a
column vector of dimension , can be thought of as an ad-
ditional column of the matrix . Thus, provided the matrices

and do not change, the SVD expansion (5) implies

(14)

where the -dimensional vector act as an additional
column of the matrix . This in turn leads to the definition

(15)

The vector , indeed seen to be functionally similar to a
document vector, corresponds to the representation of the
new document in the space. This is illustrated in Fig. 5,
which depicts the rendition of , with x’s and o’s de-
noting the original words and documents, respectively, and
the symbol “@” showing the location of the new document.

To convey the fact that it was not part of the SVD extrac-
tion, the new document is referred to as apseudodocu-
ment. Recall that the set of abstract concepts arising from the
SVD mechanism is specified to minimally spanand . As
a result, if the new document contains language patterns that
are inconsistent with those extracted from, the SVD ex-
pansion (5) will no longer apply. Similarly, if the addition of

causes the major structural associations into shift in
some substantial manner, the set of abstract concepts will be-
come inadequate. Then and will no longer be valid, in
which case it would be necessary to recompute (5) to find a
proper representation for . If, on the other hand, the new
document generally conforms to the rest of the corpus,
then thepseudodocument vector in (15) will be a reason-
able representation for .

Once the representation (15) is obtained, the “closeness”
between the new document and any document cluster
Fig. 1. The row vectors of (i.e., words) are projected onto
the can then be expressed as , calculated from
(13) in the previous section.

Fig. 5. Latent semantic vector spaceS (R = 2).

B. Semantic Inference

This can be readily exploited in command-and-control
tasks, such as desktop command-and-control [4] or auto-
mated call routing [18]. Suppose that each document cluster

can be uniquely associated with a particular action in
the task. Then the centroid of each cluster can be viewed
as the semantic representation of this action in the LSA
space. Said another way, each centroid becomes asemantic
anchorfor the corresponding action. A particularity of these
semantic anchors is that they are automatically derived from
the evidence presented during training, without regard to the
particular syntax used to express the semantic link between
various word sequences and the corresponding action.

This opens up the possibility of mapping an unknown
word sequence (treated as a new “document”) onto an action
by computing the distance (11) between that “document”
and each semantic anchor and picking the minimum. In prin-
ciple, this approach, which we refer to assemantic inference
[4], allows for any word constructs in the formulation of the
command/query. It is, therefore, best used in conjunction
with a speech-recognition system using a statistical language
model. (A typical implementation framework is illustrated
in Fig. 6.) In contrast with usual inference engines (see [26]),
semantic inference thus defined does not rely on formal
behavioral principles extracted from a knowledge base. In-
stead, the domain knowledge is automatically encapsulated
in the LSA space in a data-driven fashion.

As a result, semantic inference replaces the traditional
rule-based mapping between utterance and action by a
data-driven classification, which can be thought of as a way
to perform “bottom-up” natural language understanding
[52]. This makes it possible to relax some of the typical
command-and-control interaction constraints. For example,
it obviates the need to specify rigid language constructs
through a domain-specific (and, thus, typically hand-crafted)
finite-state grammar. This is turn allows the end user more
flexibility in expressing the desired command/query, which
tends to reduce the associated cognitive load and thereby
enhance user satisfaction [18].

C. Caveats

Recall that LSA is an instance of the “bag-of-words”
paradigm, which pays no attention to the order of words in
the sentence. This is what makes it well suited to capture
semantic relationships between words. By the same token,
however, it is inherently unable to capitalize on the local
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Fig. 6. Semantic inference for command and control.

(syntactic, pragmatic) constraints present in the language.
For tasks such as call routing, where the broad topic of
a message is to be identified, this limitation is probably
inconsequential. For general command and control tasks,
however, it may be a great deal more severe.

Imagine two commands that differ only in the presence
of the word “not” in a crucial place. The respective vector
representations could conceivably be relatively close in
the LSA space but would obviously have vastly different
intended consequences. Worse yet, some commands may
differ only through word order. Consider, for instance, the
two actual MacOS 9 commands

change pop-up to window (16)

and

change window to pop-up (17)

These two commands are mapped onto theexact same point
in LSA space, which makes them utterly impossible to dis-
ambiguate.

As it turns out, it is possible to handle such cases through
an extension of the basic LSA framework using word ag-
glomeration. The idea is to move from the characterization
of co-occurrences between words and documents to the char-
acterization of co-occurrences between word-tuples and
documents, where each word-tuple is the agglomeration
of successive words and each original document is now
expressed in terms of all the word-tuples it contains. De-
spite the resulting increase in computational complexity, this
extension is practical in the context of semantic classifica-
tion because of the relatively modest dimensions involved
(as compared to large vocabulary recognition). More details
would be beyond the scope of this manuscript, but the reader
is referred to [13] for further discussion.

V. -GRAM LSA LANGUAGE MODELING

Another major area of application of the LSA framework
is in statistical language modeling, where it can readily serve
as a paradigm for semantically driven span extension. Be-
cause of the limitation just discussed, however, it is best ap-
plied in conjunction with the standard-gram approach. This
section describes how this can be done.

A. LSA Component

Let denote the word about to be predicted and the
admissible LSA history (context) for this particular word. At
best this history can only be the current document so far, i.e.,
up to word , which we denote by . Thus, in general
terms, the LSA language model probability is given by

(18)

where the conditioning on reflects the fact that the prob-
ability depends on the particular vector space arising from
the SVD representation. In this expression, is
computed directly from the representations ofand in
the space , i.e., it is inferred from the “closeness” between
the associated word vector and (pseudo)document vector in

. We, therefore, have to specify both the appropriate pseu-
dodocument representation and the relevant probability mea-
sure.

1) Pseudodocument Representation:To come up with
a pseudodocument representation, we leverage the results
of Section IV-A, with some slight modifications due to the
time-varying nature of the span considered. From (15), the
context has a representation in the spacegiven by

(19)

As mentioned before, this vector representation for is
adequate under some consistency conditions on the general
patterns present in the domain considered. The difference
with Section IV-A is that, as increases, the content of the
new document grows, and, therefore, the pseudodocument
vector moves around accordingly in the LSA space. As-
suming the new document is semantically homegeneous,
eventually we can expect the resulting trajectory to settle
down in the vicinity of the document cluster corresponding
to the closest semantic content. This behavior is illustrated
in Fig. 7 for the same rendition as in Fig. 5.

Of course, here it is possible to take advantage of redun-
dancies in time. Assume, without loss of generality, that word

is observed at time. Then, and differ only in one
coordinate, corresponding to the index. Assume further that
the training corpus is large enough, so that the normalized
entropy ( ) does not change appreciably with
the addition of each pseudodocument. This makes it possible,
from (3), to express as

(20)

where the “1” in the above vector appears at coordinate.
This is turn implies, from (19)

(21)

As a result, the pseudodocument vector associated with the
large-span context can be efficiently updated directly in the
LSA space.
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Fig. 7. Trajectory of pseudodocument vector inS (R = 2).

2) LSA Probability: To see what “closeness” measure is
the most natural to consider, we now follow a reasoning sim-
ilar to that of Section III. Since the matrix embodies struc-
tural associations between words and documents, the extent
to which word and document co-occur in the training
corpus can be inferred from the cell of . But since

, the cell of can be obtained by taking
the dot product between theth row of the matrix and
the th row of the matrix , namely, and .
In essence, this dot product reflects how “close”is to
in the space . We conclude that a natural metric to con-
sider for the “closeness” between word and pseudodoc-
ument is the cosine of the angle between and

. Thus

(22)

for any indexing a word in the text data. A value of
means that is a strong semantic pre-

dictor of , while a value of means that
the history carries increasingly less information about the
current word. Interestingly, (22) is functionally equivalent
to (10) and (13) but involves scaling by instead of .
As before, the mapping (11) can be used to transform (22)
into a real distance measure.

To enable the computation of , it remains to
go from that distance measure to an actual probability mea-
sure. One solution, which is potentially optimal [17], is for
the distance measure to induce a family of exponential distri-
butions with pertinent marginality constraints. In practice, it
may not be necessary to incur this degree of complexity. Con-
sidering that is only a partial document anyway, exactly
what kind of distribution is induced is probably less conse-
quential than ensuring that the pseudodocument is properly
scoped (see Section V-C below). Basically, all that is needed
is a “reasonable” probability distribution to act as a proxy for
the true (unknown) measure.

We, therefore, opt to use the empirical multivariate distri-
bution constructed by allocating the total probability mass
in proportion to the distances observed during training. In
essence, this reduces the complexity to a simple histogram
normalization, at the expense of introducing a potential
“quantization-like” error. Of course, such error can be mini-
mized through a variety of histogram smoothing techniques.

Also note that the dynamic range of the distribution typi-
cally needs to be controlled by a parameter that is optimized
empirically, e.g., by an exponent on the distance term, as
discussed in [24].

Intuitively, reflects the “relevance” of word
to the admissible history, as observed through . As

such, it will be highest for words whose meaning aligns
most closely with the semantic fabric of (i.e., relevant
“content” words), and lowest for words that do not convey
any particular information about this fabric (e.g., “function”
words like “the”). This behavior is exactly the opposite
of that observed with the conventional-gram formalism,
which tends to assign higher probabilities to (frequent)
function words than to (rarer) content words. Hence, the
attractive synergy potential between the two paradigms.

B. Integration with -grams

Exploiting this potential requires integrating the two to-
gether. This kind of integration can occur in a number of
ways, such as simple interpolation [24], [41], or within the
maximum entropy framework [28], [48], [66]. Alternatively,
under relatively mild assumptions, it is also possible to de-
rive an integrated formulation directly from the expression
for the overall language model probability. We start with the
definition

(23)

where denotes, as before, some suitable admissible
history for word , and the superscripts , , and
refer to the -gram component ( , with

), the LSA component ( ), and the integration
thereof, respectively.3 This expression can be rewritten as

(24)

where the summation in the denominator extends over all
words in . Expanding and rearranging, the numerator of
(24) is seen to be

(25)

Now we make the assumption that the probability of the doc-
ument history given the current word is not affected by the
immediate context preceding it. This reflects the fact that, for
a given word, different syntactic constructs (immediate con-
text) can be used to carry the same meaning (document his-
tory). This is obviously reasonable for content words. How
much it matters for function words is less clear [44], but we

3Henceforth, we make the assumption thatn > 1. Whenn = 1, the
n-gram history becomes null, and the integrated history, therefore, degen-
erates to the LSA history alone, basically reducing (23) to (18).
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conjecture that if the document history is long enough, the
semantic anchoring is sufficiently strong for the assumption
to hold. As a result, the integrated probability becomes

(26)

If is viewed as a prior probability on the cur-
rent document history, then (26) simply translates the clas-
sical Bayesian estimation of the-gram (local) probability
using a prior distribution obtained from (global) LSA. The
end result, in effect, is a modified-gram language model
incorporating large-span semantic information.

The dependence of (26) on the LSA probability calculated
earlier can be expressed explicitly by using Bayes’ rule to get

in terms of . Since the quantity
vanishes from both numerator and denominator,

we are left with

(27)

where is simply the standard unigram probability.
Note that this expression is meaningful4 for any .

C. Context Scope Selection

In practice, expressions like (26) and (27) are often slightly
modified so that a relative weight can be placed on each
contribution (here, the-gram and LSA probabilities). Usu-
ally, this is done via empirically determined weighting co-
efficients. In the present case, such weighting is motivated
by the fact that in (26) the “prior” probability
could change substantially as the current document unfolds.
Thus, rather than using arbitrary weights, an alternative ap-
proach is to dynamically tailor the document history so
that the -gram and LSA contributions remain empirically
balanced.

This approach, referred to as context scope selection, is
more closely aligned with the LSA framework, because of
the underlying change in behavior between training and
recognition. During training, the scope is fixed to be the
current document. During recognition, however, the concept
of “current document” is ill-defined, because 1) its length
grows with each new word and 2) it is not necessarily clear
at which point completion occurs. As a result, a decision
has to be made regarding what to consider “current,” versus

4Observe that withn = 1, the right-hand side of (27) degenerates to the
LSA probability alone, as expected.

what to consider part of an earlier (presumably less relevant)
document.

A straightforward solution is to limit the size of the his-
tory considered, so as to avoid relying on old, possibly obso-
lete fragments to construct the current context. Alternatively,
to avoid making a hard decision on the size of the caching
window, it is possible to assume an exponential decay in the
relevance of the context [9], [10]. In this solution, exponen-
tial forgetting is used to progressively discount older utter-
ances. Assuming , this approach corresponds to
modifying (21) as follows:

(28)

where the parameter is chosen according to the expected
heterogeneity of the session.

D. (On-Line) Computational Effort

From the above, the cost incurred during recognition has
three components:

1) the construction of the pseudodocument representation
in , as generally done via (28);

2) the computation of the LSA probability
in (18);

3) the integration proper in (27).
The cost of (28) is seen to be flops per context

instantiation, and with the proper implementation, the cost
of computing can be shown to be
flops per word [10]. As for (27), the normalizing factor is
needed when computing perplexity numbers but can be ig-
nored when deriving pseudolikelihood scores.5 This yields a
cost of just two additional multiplications for the integration
of LSA into the -gram formalism.

The total cost to compute the integrated-gram LSA
language model probability in (27), per word and pseudodoc-
ument, is thus obtained as

(29)

For typical values of , this amounts to less than 0.05
Mflops. While this is definitely more expensive than the
usual table lookup required in conventional-gram language
modeling, (29) arguably represents a relatively modest over-
head. This allows hybrid-gram LSA language modeling
to be taken advantage of in early stages of the search [10].

VI. SMOOTHING

Since the derivation of (27) does not depend on a partic-
ular form of the LSA probability, it is possible to take advan-
tage of the additional layer(s) of knowledge uncovered ear-
lier through word and/or document clustering. Basically, we
can expect words/documents related to the current document
to contribute with more synergy, and unrelated words/docu-
ments to be better discounted. In other words, clustering pro-

5Strictly speaking, this involves an approximation, since the denominator
of (27) is not constant over the set of hypotheses being compared. In prac-
tice, we have not observed any performance degradation when making this
approximation.
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vides a convenient smoothing mechanism in the LSA space
[6], [8], [10].

A. Word Smoothing

To illustrate, using the set of word clusters,
, produced earlier, we can expand (18) as follows:

(30)

which carries over to (27) in a straightforward manner. In
(30), the probability is qualitatively similar to
(18) and can, therefore, be obtained with the help of (22) by
simply replacing the representation of the word by that
of the centroid of word cluster . In contrast, the proba-
bility depends on the “closeness” of relative
to this (word) centroid. To derive it, we, therefore, have to
rely on the empirical multivariate distribution induced not by
the distance obtained from (22) but by that obtained from
the measure (10) mentioned in Section III-A. Note that a
distinct distribution can be inferred on each of the clusters

, thus allowing us to compute all quantities for
and .

The behavior of the model (30) depends on the number of
word clusters defined in the space. If there are as many
classes as words in the vocabulary ( ), then with the
convention that , (30) simply reduces to (18).
No smoothing is introduced. Conversely, if all the words are
in a single class ( ), the model becomes maximally
smooth: the influence of specific semantic events disappears,
leaving only a broad (and, therefore, weak) vocabulary effect
to take into account. This may in turn degrade the predictive
power of the model.

Generally speaking, as the number of word classes
increases, the contribution of tends to increase,
because the clusters become more and more semantically
meaningful. By the same token, however, the contribution of

for a given tends to decrease, because the
clusters eventually become too specific and fail to reflect the
overall semantic fabric of . Thus, there exists a cluster
set size where the degree of smoothing is optimal for the task
considered (which has indeed been verified experimentally;
see [6]).

B. Document Smoothing

Exploiting document clusters instead of word clusters
leads to a similar expansion

(31)

where the clusters result from the document clustering of
Section III. This time, it is the probability that is
qualitatively similar to (18), and can, therefore, be obtained
with the help of (22). As for the probability , it
depends on the “closeness” of relative to the centroid
of document cluster . Thus, it can be obtained through the

empirical multivariate distribution induced by the distance
derived from (13) in Section III-C.

Again, the behavior of the model (31) depends on the
number of document clusters defined in the space. Com-
pared to (30), however, (31) is more difficult to interpret in
the limits (i.e., and ). If , for example,
(31) does not reduce to (18), because has not been seen
in the training data and, therefore, cannot be identified with
any of the existing clusters. Similarly, the fact that all the
documents are in a single cluster ( ) does not imply the
degree of degenerescence observed previously, because the
cluster itself is strongly indicative of the general discourse
domain (which was not generally true of the “vocabulary
cluster” above). Hence, depending on the size and structure
of the corpus, the model may still be adequate to capture
general discourse effects.

To see that, we apply in (31), whereby (27) becomes

(32)

since the quantity vanishes from both numer-
ator and denominator. In this expression refers to the
single document cluster encompassing all documents in the
LSA space. In case the corpus is fairly homogeneous,will
be a more reliable representation of the underlying fabric of
the domain than , and, therefore, act as a robust proxy
for the context observed. Interestingly, (32) amounts to esti-
mating a “correction” factor for each word, which depends
only on the overall topic of the collection. This is clearly sim-
ilar to what is done in the cache approach to language model
adaptation (see, e.g., [23] and [47]), except that, in the present
case, all words are treated as though they were already in the
cache.

More generally, as the number of document classesin-
creases, the contribution of tends to increase, to
the extent that a more homogeneous topic boosts the effects
of any related content words. On the other hand, the contribu-
tion of tends to decrease, because the clusters
represent more and more specific topics, which increases the
chance that the pseudodocument becomes an outlier.
Thus, again there exists a cluster set size where the degree of
smoothing is optimal for the task considered (see [6]).

C. Joint Smoothing

Finally, an expression analogous to (30) and (31) can also
be derived to take advantage of both word and document
clusters. This leads to a mixture probability specified by

(33)
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which, for tractability, can be approximated as

(34)

In this expression, the clusters and are as previously,
as are the quantities and . As for the
probability , it is qualitatively similar to (18), and
can, therefore, be obtained accordingly.

To summarize, any of the expressions (18), (30), (31), or
(34) can be used to compute (27), resulting in four families
of hybrid -gram LSA language models. Associated with
these different families are various tradeoffs to become ap-
parent in the next section.

VII. EXPERIMENTS

We now illustrate the behavior of hybrid-gram LSA
modeling on a large-vocabulary recognition task. The gen-
eral domain considered was business news, as reflected in
the WSJ portion of the NAB corpus. This was convenient for
comparison purposes since conventional-gram language
models are readily available, trained on exactly the same data
[46].

A. Experimental Conditions

We conducted two series of experiments, designed to mea-
sure perplexity reduction and word error rate reduction, re-
spectively. In both cases, the text corpusused to train
the LSA component of the model was composed of about

documents spanning the years 1987 to 1989,
comprising approximately 42 million words. The vocabulary

was constructed by taking the 20 000 most frequent words
of the NAB corpus, augmented by some words from an ear-
lier release of the WSJ corpus, for a total of
words.

We performed the singular value decomposition of the
matrix of co-occurrences between words and documents
using the single vector Lanczos method [14]. Over the
course of this decomposition, we experimented with dif-
ferent numbers of singular values retained, and found that

seemed to achieve an adequate balance between
reconstruction error—minimizing in (6)—and noise
suppression—minimizing the ratio between order-and
order- traces . This led to a vector space of
dimension 125.

We then used this LSA space to construct the (un-
smoothed) LSA model (18), following the procedure
described in Section V. We also constructed the various
clustered LSA models presented in Section VI, to imple-
ment smoothing based on word clusters—word smoothing
(30), document clusters—document smoothing (31), and
both—joint smoothing (34). We experimented with different
values for the number of word and/or document clusters (see
[6]) and ended up using word clusters and

document cluster. Finally, using (27), we combined each of
these models with either the standard WSJ0 bigram or the
standard WSJ0 trigram. The resulting hybrid-gram LSA
language models, dubbed bi-LSA and tri-LSA models,
respectively, were then used in lieu of the standard WSJ0
bigram and trigram models in the two series of experiments
mentioned above.

In the first series, we measured perplexity using a test set of
about 2 million words from 1992 and 1994, set aside for this
purpose from the WSJ corpus. On this test set the perplexity
obtained with the standard WSJ0 bigram and trigram was 215
and 142, respectively.6

In the second series, we performed speaker-independent,
continuous speech recognition of a 1992 test corpus of 496
sentences uttered by 12 native speakers of English. (The
acoustic training corpus consisted of 7200 sentences of data
uttered by 84 speakers, known as WSJ0 SI-84.) On these
test data, our baseline recognition system (described in
detail in [10]) produced reference error rates of 16.7% and
11.8% across the 12 speakers considered, using the standard
bigram and trigram language models, respectively.

B. Perplexity

A summary of the results is provided in Table 1, in terms
of both absolute perplexity numbers and perplexity reduction
observed (in angle brackets). Without smoothing, the bi-LSA
language model leads to a 32% reduction in perplexity com-
pared to the standard bigram, which brings it to the same level
of performance as the standard trigram. The corresponding
tri-LSA language model leads to a somewhat smaller rela-
tive improvement compared to the standard trigram; how-
ever, the reduction in perplexity still reaches almost 20%.
With smoothing, the improvement brought about by the LSA
component is even more marked: the best smoothed bi-LSA
perplexity values (102–106) are about 50% better than that
obtained using the standard bigram, while the best smoothed
tri-LSA perplexity values (95%–98%) are about 30% better
than that obtained using the standard trigram.

The qualitative behavior of the two-gram LSA lan-
guage models appears to be quite similar. Quantitatively, the
average reduction achieved by tri-LSA is about 30% less than
that achieved by bi-LSA. This is most likely related to the
greater predictive power of the trigram compared to the bi-
gram, which makes the LSA contribution of the hybrid lan-
guage model comparatively smaller. This is consistent with
the fact that the latent semantic information delivered by
the LSA component would (eventually) be subsumed by an

-gram with a large enough.

C. Word Error Rate

Table 2 summarizes the performance achieved on the
recognition experiments, in a format similar to that of
Table 1. Note that the two tables are not strictly comparable,

6We conjecture that these relatively high values are largely due to the
difference in time period between training and recognition.
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Table 1 Perplexity Results Using Hybrid Bi-LSA and Tri-LSA
Language Modeling

since the test sets were different,7 but they certainly reflect
the same general behavior. Overall we observe a reduction
in average word error rate ranging from 14% to 23% in the
bi-LSA case, and from 9% to 16% in the tri-LSA case.

As usual, the reduction in average error rate is less
than the corresponding reduction in perplexity, due to the
influence of the acoustic component in actual recognition
and the resulting “ripple effect” of each recognition error. In
the case of -gram LSA language modeling, this effect
can be expected to be slightly more pronounced than in the
standard -gram case. This is because recognition errors
are potentially able to affect the LSA context well into the
future, through the estimation of a flawed representation
of the pseudodocument in the LSA space. This lingering
behavior, which can obviously reduce the effectiveness of
the LSA component, is a direct by-product of large-span
modeling. Clearly, the more accurate the recognition system,
the less problematic this unsupervised context construction
becomes.

In terms of CPU performance, we observed an increase
in decoding time of about 30% when using the bi-LSA lan-
guage model, as compared to the decoding time obtained
when using the conventional bigram. This, of course, can be
traced to the overhead calculated in (29). For our recognition
system, this translates into a CPU load roughly comparable
to that of a conventional trigram. A similar increase was also
observed with the tri-LSA language model, as compared to
the conventional trigram.

Regarding the comparison between bi-LSA and tri-LSA,
comments similar to those made regarding Table 1 apply
here as well. Again, average reduction achieved by tri-LSA
is about 30% less than that achieved by bi-LSA. Note that
this reduction is far from constant across individual sessions,
reflecting the varying role played by global semantic con-
straints from one set of spoken utterances to another.

7On the test set of Table 2, for example, the perplexity reduction observed
in the case of the baseline bi-LSA model (with no smoothing) was only 25%,
as opposed to 32% in the case of Table 1.

Table 2 Word Error Rate (WER) Results Using Hybrid Bi-LSA
and Tri-LSA Language Modeling

D. Context Scope Selection

It is important to emphasize that the recognition task
chosen above represents a severe test of the LSA component
of the hybrid language model. By design, the test corpus is
constructed with no more than three or four consecutive sen-
tences extracted from a single article. Overall, it comprises
140 distinct document fragments, which means that each
speaker speaks, on the average, about 12 different “mini
documents.” As a result, the context effectively changes
every 60 words or so, which makes it somewhat challenging
to build a very accurate pseudodocument representation.
This is a situation where it is critical for the LSA component
to appropriately forget the context as it unfolds, to avoid
relying on an obsolete representation. To obtain the results
of Table 2, we used the exponential forgetting setup of (28)
with a value .8

In order to assess the influence of this selection, we also
performed recognition with different values of the parameter

ranging from to , in decrements of 0.01.
Recall from Section V that the value corresponds to
an unbounded context (as would be appropriate for a very
homogeneous session), while decreasing values ofcorre-
spond to increasingly more restrictive contexts (as required
for a more heterogeneous session). Said another way, the gap
between and 1 tracks the expected heterogeneity of the cur-
rent session.

Table 3 presents the corresponding recognition results,
in the case of the best bi-LSA framework (i.e., with word
smoothing). It can be seen that, with no forgetting, the overall
performance is substantially less than the comparable one
observed in Table 2 (13% compared to 23% reduction in
word error rate). This is consistent with the characteristics of
the task and underscores the role of discounting as a suitable
counterbalance to frequent context changes. Performance
rapidly improves as decreases from to ,

8To fix ideas, this means that the word that occurred 60 words ago is dis-
counted through a weight of about 0.2.
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Table 3 Influence of Context Scope Selection on Word Error Rate

presumably because the pseudodocument representation
gets less and less contaminated with obsolete data. If for-
getting becomes too aggressive, however, the performance
starts degrading, as the effective context no longer has an
equivalent length that is sufficient for the task at hand. Here,
this happens for .

VIII. I NHERENT TRADEOFFS

In the previous section, the LSA component of the hy-
brid language model was trained on exactly the same data
as its -gram component. This is not a requirement, how-
ever, which raises the question of how critical the selection
of the LSA training data is to the performance of the recog-
nizer. This is particularly interesting since LSA is known to
be weaker on heterogeneous corpora (see, e.g., [36]).

A. Cross-Domain Training

To ascertain the matter, we went back to calculating the
LSA component using the original, unsmoothed model (18).
We kept the same underlying vocabulary, left the bigram
component unchanged, and repeated the LSA training on
non-WSJ data from the same general period. Three corpora
of increasing size were considered, all corresponding to As-
sociated Press (AP) data:

1) , composed of documents from 1989,
comprising approximately 44 million words;

2) , composed of documents from
1988 and 1989, comprising approximately 80 million
words;

3) , composed of documents from 1988
to 1990, comprising approximately 117 million words.

In each case, we proceeded with the LSA training as de-
scribed in Section II. The resulting word error rate reductions
are reported in (the top rows of) Table 4.

Two things are immediately apparent. First, the perfor-
mance improvement in all cases is much smaller than pre-
viously observed (recall the corresponding reduction of 14%
in Table 1). Larger training set sizes notwithstanding, on the
average the hybrid model trained on AP data is about four
times less effective than that trained on WSJ data. This sug-
gests a relatively high sensitivity of the LSA component to

Table 4 Model Sensitivity

the domain considered. To put this observation into perspec-
tive, recall that: 1) by definition, content words are what char-
acterize a domain and 2) LSA inherently relies on content
words, since, in contrast with-grams, it cannot take advan-
tage of the structural aspects of the sentence. It, therefore,
makes sense to expect a higher sensitivity for the LSA com-
ponent than for the usual-gram.

Second, the overall performance does not improve appre-
ciably with more training data, a fact already observed in [6]
using a perplexity measure. This supports the conjecture that
no matter the amount of data involved, LSA still detects a
substantial mismatch between AP and WSJ data from the
same general period. This in turn suggests that the LSA com-
ponent is sensitive not just to the general training domain but
also to the particular style of composition, as might be re-
flected, for example, in the choice of content words and/or
word co-occurrences. On the positive side, this bodes well
for rapid adaptation to cross-domain data, provided a suit-
able adaptation framework can be derived.

B. Within-Domain Targeted Training

Knowing the results obtained using out-of-domain
training data, it is tempting to go the other way and inves-
tigate the performance that can be achieved using perfectly
within-domain training data. In addition, this might be
useful to establish an upper bound on hybrid-gram LSA
performance. So, we opted to retrain the LSA parameters on
just the test set, which we refer to as targeted training. We,
therefore, defined a (much smaller) corpus, composed
only of the test documents. This corpus com-
prised approximately 8500 words, which effectively reduced
the vocabulary to about 2500 words. We then repeated
the above experiments, i.e., using the bi-LSA model with
no smoothing, and again with the bigram component left
unchanged. The result is presented on the last row of Table 4,
labeled “Target Docs.”

A couple of points can be made. First, there is a limit to the
performance that can be gained by applying LSA constraints.
With the baseline model (18), this limit is seen to be around
17%. However, this improvement may not be indicative of
the best possible achievable with the hybrid language model,
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due again to the atypical document fragmentation existing in
the test data. Second, this overall performance improvement
is only about 25% better than that observed in Table 1 (14%).
This may, in part, be due to the importance of composition
style mentioned earlier. Indeed, targeted data may not offer
much value-add if we presume that “style” can be appropri-
ately captured using general datafrom the same sourcein the
same domain. This in turn suggests that within-domain adap-
tation may not generally be compelling.

Finally, to gauge the effect of clustering with such a
narrow training set, we repeated the experiments once
more with the word-clustered model (30), using the same
clustering set up as before. We postulated that most clusters
would be sharply defined, given the relatively small amount
of training data. The result is again presented on the last row
of Table 4, this time in the right-most column (“Bi-LSA with
Word Smoothing”). The overall performance improvement
(34%) is seen to be almost 50% better than the comparable
one observed in Table 2 (23%). We believe, however, that
this is partly a consequence of the artificially limited task at
hand. In a way, it simply translates the power of clustering
when clear-cut regions of the LSA space can be isolated.

C. Discussion

Such results show that the hybrid-gram LSA approach
is a promising avenue for incorporating large-span semantic
information into -gram modeling. Clearly, one has to be
cognizant of some of the limitations of the method, as evi-
denced by the sensitivity to LSA training data demonstrated
above. The sensitivity to the style of composition, in partic-
ular, underscores the relatively narrow semantic specificity
of the LSA paradigm, in the sense that the spacedoes not
appear to reflect any of the pragmatic characteristics of the
task considered. Perhaps what is required is to explicitly in-
clude an “authorship style” component into the LSA frame-
work. In [55] and [71], for example, it has been suggested to
define an stochastic matrix (a matrix with nonnega-
tive entries and row sums equal to 1) to account for the way
style modifies the frequency of words. This solution, how-
ever, makes the assumption—not always valid—that this in-
fluence is independent of the underlying subject matter.

In any event, this limitation can be mitigated through
careful attention to the expected domain of use. Perhaps
more important, we pointed out earlier that LSA is inher-
ently more adept at handling content words than function
words. But, as is well known, a substantial proportion
of speech recognition errors come from function words,
because of their tendency to be shorter, not well articulated,
and acoustically confusable. In general, the LSA component
will not be able to help fix these problems. Thus, even within
a well-specified domain, the benefits of the hybrid approach
will not extend to all potential ASR errors.

The latter limitation suggests that syntactically driven span
extension approaches may be necessary to complement such
semantically driven modeling. On that subject, note from
Section V that the integrated history (23) could easily be
modified to reflect a headword-based-gram as opposed to a
conventional -gram history, without invalidating the deriva-

tion of (27). Thus, there is no theoretical barrier to the inte-
gration of latent semantic information with structured lan-
guage models such as described in [20] and [42]. Similarly,
there is no reason why the LSA paradigm could not be used
in conjunction with the integrative approaches of the kind
proposed in [62] and [66], or even within the cache adaptive
framework [23], [47].

Eventually, such a combination of approaches will prob-
ably be successful in handling most of the syntactic and
semantic long-term dependencies present in the language.
Still, a major difficulty is likely to remain the capture of
the elusive long-term pragmatic aspects of discourse. It
is worthwhile to note that -gram modeling encapsulates
local pragmatics surprisingly well, as is readily apparent
from reading trigram-generated sentences (see [62]). Thus,
developing a complementary, pragmatically driven span
extension strategy is perhaps the inevitable next step in
statistical language modeling.

IX. CONCLUSION

Statistical -grams are inherently limited to capturing lin-
guistic phenomena spanning at mostwords. This paper has
focused on a semantically driven span extension approach
based on the LSA paradigm, in which hidden semantic re-
dundancies are tracked across (semantically homogeneous)
documents. This results in a vector representation of each
word and document in a space of relatively modest dimen-
sion, which in turn makes it possible to specify suitable met-
rics for word–document, word–word, and document–docu-
ment comparisons. In addition, well-known clustering algo-
rithms can be applied efficiently, which allows the character-
ization of parallel layers of semantic knowledge in the space,
with variable granularity.

Because this vector representation reflects the major
semantic associations in the corpus, as determined by the
overall pattern of the language, the resulting language
models complement conventional-grams very well. Har-
nessing this synergy is a matter of deriving an integrative
formulation to combine the two paradigms. By taking ad-
vantage of the various kinds of smoothing available, several
families of hybrid -gram LSA models can be obtained.
The resulting language models were shown to substantially
outperform the associated standard-grams on a subset of
the NAB News corpus.

Such results notwithstanding, one has to be cognizant
of the limitations of the approach. For example, hybrid

-gram LSA modeling shows some sensitivity to both
the training domain and the style of composition. While
cross-domain adaptation may ultimately alleviate this
problem, an appropriate LSA adaptation framework will
have to be derived for this purpose. More generally, the
apparent inability of semantically driven span extension to
improve function word recognition underscores the need
for a more encompassing strategy involving syntactically
motivated approaches as well.

Looking into the future, the most probable scenario for
success is one where large-span syntactic knowledge, global
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semantic analysis, and pragmatic task information each plays
a role in making the prediction of the current word given the
observed context more accurate and more robust. The chal-
lenge, of course, will be first, in integrating these various
knowledge sources into an efficient language model com-
ponent, and second, in integrating this language model with
the acoustic component of the speech-recognition system, all
within the resource constraints of the application.

ACKNOWLEDGMENT

The author would like to thank the many people with
whom he has had stimulating discussions on latent semantic
modeling over the years, including N. B. Coccaro from the
University of Colorado at Boulder, S. Khudanpur from Johns
Hopkins University, C.-H. Lee from Bell Laboratories, S.
Renals from the University of Sheffield, P. Vozila from
Lernout & Hauspie, and P. C. Woodland from Cambridge
University. He is also indebted to the anonymous reviewers
for their constructive feedback and helpful suggestions.

REFERENCES

[1] L. R. Bahl, F. Jelinek, and R. L. Mercer, “A maximum likelihood
approach to continuous speech recognition,”IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-5, pp. 179–190, Mar. 1983.

[2] J. R. Bellegarda, “Context-dependent vector clustering for speech
recognition,” in Automatic Speech and Speaker Recognition:
Advanced Topics, C.-H. Lee, F. K. Soong, and K. K. Paliwal,
Eds. Norwell, MA: Kluwer, Mar. 1996, ch. 6, pp. 133–157.

[3] , “A latent semantic analysis framework for large-span lan-
guage modeling,” inProc. 5th Eur. Conf. Speech Commun. Technol.,
vol. 3, Rhodes, Greece, Sept. 1997, pp. 1451–1454.

[4] , “Data-driven semantic inference for command and control by
voice,” Apple Computer, Cupertino, CA, User Experience Group
Tech. Rep., Apr. 1998.

[5] , “Exploiting both local and global constraints for multi-span
statistical language modeling,” inProc. 1998 Int. Conf. Acoust.,
Speech, Signal Processing, vol. 2, Seattle, WA, May 1998, pp.
677–680.

[6] , “A multi-span language modeling framework for large vocab-
ulary speech recognition,”IEEE Trans. Speech Audio Processing,
vol. 6, pp. 456–467, Sept. 1998.

[7] , “Multi-span statistical language modeling for large vocabu-
lary speech recognition,” inProc. Int. Conf. Spoken Language Proc.,
Sydney, Australia, Dec. 1998, pp. 2395–2399.

[8] , “Speech recognition experiments using multi-span statistical
language modeling,” inProc. 1999 Int. Conf. Acoust., Speech, Signal
Processing, vol. 2, Phoenix, AZ, Mar. 1999, pp. 717–720.

[9] , “Context scope selection in multi-span statistical language
modeling,” inProc. 6th Eur. Conf. Speech Commun. Technol., vol.
5, Budapest, Hungary, Sept. 1999, pp. 2163–2166.

[10] , “Large vocabulary speech recognition with multi-span statis-
tical language models,”IEEE Trans. Speech Audio Processing, vol.
8, pp. 76–84, Jan. 2000.

[11] , “Robustness in statistical language modeling: Review and per-
spectives,” in Robustness in Speech and Language Processing, G. J.
M. van Noord and J. C. Junqua, Eds. Dortrecht, The Netherlands:
Kluwer, to be published.

[12] J. R. Bellegarda, J. W. Butzberger, Y. L. Chow, N. B. Coccaro, and
D. Naik, “A novel word clustering algorithm based on latent se-
mantic analysis,” inProc. 1996 Int. Conf. Acoust., Speech, Signal
Processing, Atlanta, GA, May 1996, pp. I172–I175.

[13] J. R. Bellegarda and K. E. A. Silverman, “Toward unconstrained
command and control: Data-driven semantic inference,” inProc. Int.
Conf. Spoken Language Proc., Beijing, China, Oct. 2000.

[14] M. W. Berry, “Large-scale sparse singular value computations,”Int.
J. Supercomp. Appl., vol. 6, no. 1, pp. 13–49, 1992.

[15] M. W. Berry, S. T. Dumais, and G. W. O’Brien, “Using linear algebra
for intelligent information retrieval,”SIAM Rev., vol. 37, no. 4, pp.
573–595, 1995.

[16] M. Berry and A. Sameh, “An overview of parallel algorithms for
the singular value and dense symmetric eigenvalue problems,”J.
Comput. Appl. Math., vol. 27, pp. 191–213, 1989.

[17] W. Byrne, private communication, Nov. 1997.
[18] B. Carpenter and J. Chu-Carroll, “Natural language call

routing: A robust, self-organized approach,” inProc. Int. Conf.
Spoken Language Proc., Sydney, Australia, Dec. 1998, pp.
2059–2062.

[19] C. Chelba, D. Engle, F. Jelinek, V. Jimenez, S. Khudanpur, L.
Mangu, H. Printz, E. S. Ristad, R. Rosenfeld, A. Stolcke, and D.
Wu, “Structure and performance of a dependency language model,”
in Proc. 5th Eur. Conf. Speech Commun. Technol.Rhodes, Greece,
Sept. 1997, vol. 5, pp. 2775–2778.

[20] C. Chelba and F. Jelinek, “Recognition performance of a structured
language model,” inProc. 6th Eur. Conf. Speech Commun. Technol.,
vol. 4, Budapest, Hungary, Sept. 1999, pp. 1567–1570.

[21] S. Chen, “Building probabilistic models for natural language,” Ph.D.
dissertation, Harvard Univ., Cambridge, MA, 1996.

[22] J. Chu-Carroll and B. Carpenter, “Dialog management in
vector-based call routing,” inProc. Conf. Assoc. Comput. Linguis-
tics ACL/COLING, Montreal, Canada, 1998, pp. 256–262.

[23] P. R. Clarkson and A. J. Robinson, “Language model adaptation
using mixtures and an exponentially decaying cache,” inProc. 1997
Int. Conf. Acoust., Speech, Signal Processing, vol. 1, Munich, Ger-
many, May 1997, pp. 799–802.

[24] N. Coccaro and D. Jurafsky, “Toward better integration of se-
mantic predictors in statistical language modeling,” inProc. Int.
Conf. Spoken Language Proc., Sydney, Australia, Dec. 1998, pp.
2403–2406.

[25] J. K. Cullum and R. A. Willoughby,Lanczos Algorithms for Large
Symmetric Eigenvalue Computations—vol. 1 Theory. Boston,
MA: Brickhauser, 1985, ch. 5.

[26] R. De Mori, “Recognizing and using knowledge structures in di-
alog systems,” inProc. Aut. Speech Recog. Understanding Work-
shop, Keystone, CO, Dec. 1999, pp. 297–306.

[27] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,”J. Amer. Soc.
Inform. Sci., vol. 41, pp. 391–407, 1990.

[28] S. Della Pietra, V. Della Pietra, R. Mercer, and S. Roukos, “Adaptive
language model estimation using minimum discrimination estima-
tion,” in Proc. 1992 Int. Conf. Acoust., Speech, Signal Processing,
vol. 1, San Francisco, CA, Apr. 1992, pp. 633–636.

[29] S. T. Dumais, “Improving the retrieval of information from external
sources,”Behav. Res. Methods, Instrum., Comput., vol. 23, no. 2, pp.
229–236, 1991.

[30] , “Latent semantic indexing (LSI) and TREC-2,” inProc. 2nd
Text Retrieval Conf. (TREC-2), D. Harman, Ed., 1994, NIST Pub.
500-215, pp. 105–116.

[31] M. Federico and R. De Mori, “Language modeling,” inSpoken Dia-
logues with Computers, R. De Mori, Ed. London, U.K.: Academic,
1998, ch. 7, pp. 199–230.

[32] P. W. Foltz and S. T. Dumais, “Personalized information delivery:
An analysis of information filtering methods,”Commun. ACM, vol.
35, no. 12, pp. 51–60, 1992.

[33] P. N. Garner, “On topic identification and dialogue move recogni-
tion,” Comput. Speech Lang., vol. 11, no. 4, pp. 275–306, 1997.

[34] D. Gildea and T. Hofmann, “Topic-based language modeling using
EM,” in Proc. 6th Eur. Conf. Speech Commun. Technol., vol. 5, Bu-
dapest, Hungary, Sept. 1999, pp. 2167–2170.

[35] G. Golub and C. Van Loan,Matrix Computations, 2nd
ed. Baltimore, MD: Johns Hopkins, 1989.

[36] Y. Gotoh and S. Renals, “Document space models using latent se-
mantic analysis,” inProc. 5th Eur. Conf. Speech Commun. Technol.,
vol. 3, Rhodes, Greece, Sept. 1997, pp. 1443–1448.

[37] T. Hofmann, “Probabilistic latent semantic analysis,” inProc. 15th
Conf. Uncertainty in AI, Stockholm, Sweden, July 1999.

[38] , “Probabilistic topic maps: navigating through large text col-
lections,” inLecture Notes in Computer Science. Heidelberg, Ger-
many: Springer-Verlag, July 1999, pp. 161–172. no. 1642.

[39] R. Iyer and M. Ostendorf, “Modeling long distance dependencies
in language: Topic mixtures versus dynamic cache models,”IEEE
Trans. Speech Audio Processing, vol. 7, pp. 30–39, Jan. 1999.

[40] F. Jelinek, “The development of an experimental discrete dictation
recognizer,”Proc. IEEE, vol. 73, pp. 1616–1624, Nov. 1985.

[41] , “Self-organized language modeling for speech recognition,”
in Readings in Speech Recognition, A. Waibel and K. F. Lee,
Eds. New York: Morgan Kaufmann, 1990, pp. 450–506.

BELLEGARDA: STATISTICAL LANGUAGE MODELING 1295



[42] F. Jelinek and C. Chelba, “Putting language into language mod-
eling,” in Proc. 6th Eur. Conf. Speech Commun. Technol., vol. 1,
Budapest, Hungary, Sept. 1999, pp. KN1–KN5.

[43] D. Jurafsky, C. Wooters, J. Segal, A. Stolcke, E. Fosler, G. Tajchman,
and N. Morgan, “Using a stochastic context-free grammar as a
language model for speech recognition,” inProc. 1995 Int. Conf.
Acoust., Speech, Signal Processing, vol. 1, Detroit, MI, May 1995,
pp. 189–192.

[44] S. Khudanpur, “Putting language back into language modeling,” pre-
sented at theWorkshop-2000 Spoken Lang. Reco. Understanding,
Summit, NJ, Feb. 2000.

[45] R. Kneser, “Statistical language modeling using a variable context,”
in Proc. Int. Conf. Spoken Language Proc., Philadelphia, PA, Oct.
1996, pp. 494–497.

[46] F. Kubala, J. R. Bellegarda, J. R. Cohen, D. Pallett, D. B. Paul, M.
Phillips, R. Rajasekaran, F. Richardson, M. Riley, R. Rosenfeld, R.
Roth, and M. Weintraub, “The hub and spoke paradigm for CSR
evaluation,” inProc. ARPA Speech and Natural Language Work-
shop, Mar. 1994, pp. 40–44.

[47] R. Kuhn and R. De Mori, “A cache-based natural language method
for speech recognition,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 12, pp. 570–582, June 1990.

[48] J. D. Lafferty and B. Suhm, “Cluster expansion and iterative scaling
for maximum entropy language models,” inMaximum Entropy and
Bayesian Methods, K. Hanson and R. Silver, Eds. Norwell, MA:
Kluwer, 1995.

[49] T. K. Landauer and S. T. Dumais, “Solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and repre-
sentation of knowledge,”Psych. Rev., vol. 104, no. 2, pp. 211–240,
1997.

[50] T. K. Landauer, D. Laham, B. Rehder, and M. E. Schreiner, “How
well can passage meaning be derived without using word order:
A comparison of latent semantic analysis and humans,” inProc.
Cognit. Science Soc., 1998.

[51] R. Lau, R. Rosenfeld, and S. Roukos, “Trigger-based language
models: A maximum entropy approach,” inProc. 1993 Int. Conf.
Acoust., Speech, Signal Processing, Minneapolis, MN, May 1993,
pp. II45–48.

[52] C.-H. Lee, private communication, Dec. 1999.
[53] H. Ney, U. Essen, and R. Kneser, “On structuring probabilistic de-

pendences in stochastic language modeling,”Comput. Speech Lang.,
vol. 8, pp. 1–38, 1994.

[54] T. Niesler and P. Woodland, “A variable-length category-based
N -gram language model,” inProc. 1996 Int. Conf. Acoust., Speech,
Signal Processing, Atlanta, GA, May 1996, pp. I164–I167.

[55] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “La-
tent semantic indexing: A probabilistic analysis,” inProc. 17th ACM
Symp. Princip. Database Syst., Seattle, WA, 1998.

[56] F. C. Pereira, Y. Singer, and N. Tishby, “Beyond wordn-Grams,”
Comput. Linguistics, vol. 22, June 1996.

[57] L. R. Rabiner, B. H. Juang, and C.-H. Lee, “An overview of auto-
matic speech recognition,” inAutomatic Speech and Speaker Recog-
nition: Advanced Topics, C.-H. Lee, F. K. Soong, and K. K. Paliwal,
Eds. Boston, MA: Kluwer, 1996, ch. 1, pp. 1–30.

[58] R. Rosenfeld, “The CMU statistical language modeling toolkit and
its use in the 1994 ARPA CSR evaluation,” inProc. ARPA Speech
and Natural Language Workshop, Mar. 1994.

[59] , “Optimizing lexical andN -gram coverage via judicious use of
linguistic data,” inProc. 4th Eur. Conf. Speech Commum. Technol.,
Madrid, Spain, Sept. 1995, pp. 1763–1766.

[60] , “A maximum entropy approach to adaptive statistical lan-
guage modeling,” inComput. Speech Lang., July 1996, vol. 10, pp.
187–228.

[61] , “Two decades of statistical language modeling: Where do we
go from here,”Proc. IEEE, vol. 88, pp. 1270–1278, Aug. 2000.

[62] R. Rosenfeld, L. Wasserman, C. Cai, and X. J. Zhu, “Interactive fea-
ture induction and logistic regression for whole sentence exponen-
tial language models,” inProc. Aut. Speech Recog. Understanding
Workshop, Keystone, CO, Dec. 1999, pp. 231–236.

[63] S. Roukos, “Language representation,” inSurvey of the State of the
Art in Human Language Technology, R. Cole, Ed. Cambridge,
U.K.: Cambridge Univ. Press, 1997, ch. 6.

[64] R. Schwartz, T. Imai, F. Kubala, L. Nguyen, and J. Makhoul, “A
maximum likelihood model for topic classification of broadcast
news,” in Proc. 5th Eur. Conf. Speech Commun. Technol., vol. 3,
Rhodes, Greece, Sept. 1997, pp. 1455–1458.

[65] R. E. Story, “An explanation of the effectiveness of latent semantic
indexing by means of a Bayesian regression model,”Inform.
Process. Manage., vol. 32, no. 3, pp. 329–344, 1996.

[66] J. Wu and S. Khudanpur, “Combining nonlocal, syntactic and
N -gram dependencies in language modeling,” inProc. 6th Eur.
Conf. Speech Commun. Technol., vol. 5, Budapest, Hungary, Sept.
1999, pp. 2179–2182.

[67] D. H. Younger, “Recognition and parsing of context-free languages
in timeN ,” Inform. Control, vol. 10, pp. 198–208, 1967.

[68] R. Zhang, E. Black, and A. Finch, “Using detailed linguistic structure
in language modeling,” inProc. 6th Eur. Conf. Speech Commun.
Technol., vol. 4, Budapest, Hungary, Sept. 1999, pp. 1815–1818.

[69] X. J. Zhu, S. F. Chen, and R. Rosenfeld, “Linguistic features for
whole sentence maximum entropy language models,” inProc. 6th
Eur. Conf. Speech Commun. Technol., vol. 4, Budapest, Hungary,
Sept. 1999, pp. 1807–1810.

[70] V. Zue, J. Glass, D. Goodine, H. Leung, M. Phillips, J. Polifroni,
and S. Seneff, “Integration of speech recognition and natural lan-
guage processing in the MIT voyager system,” inProc. 1991 IEEE
Int. Conf. Acoust., Speech, Signal Processing, Toronto, Canada, May
1991, pp. 713–716.

[71] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “La-
tent semantic indexing: A probabilistic analysis,” J. Comp. Syst.
Sci., to be published.

[72] R. Rosenfeld, “Two decades of statistical language modeling: Where
do we go from here,” presented at theWorkshop-2000 Spoken Lang.
Reco. Understanding, Summit, NJ, Feb. 2000.

Jerome R. Bellegarda(Senior Member, IEEE)
received the Diplôme d’Ingénieur degree (summa
cum laude) from the Ecole Nationale Supérieure
d’Electricité et de Mécanique, Nancy, France, in
1984 and the M.S. and Ph.D. degrees in electrical
engineering from the University of Rochester,
Rochester, NY, in 1984 and 1987, respectively.

In 1987, he was a Research Associate at the
Department of Electrical Engineering, Univer-
sity of Rochester, developing multiple access
coding techniques. From 1988 to 1994, he was a

Research Staff Member at the IBM T.J. Watson Research Center, Yorktown
Heights, NY, working on speech and handwriting recognition, particularly
acoustic and chirographic modeling. In 1994, he joined Apple Computer,
Cupertino, CA, where he is currently Principal Scientist in speech recogni-
tion in the Spoken Language Group. At Apple, he has worked on speaker
adaptation, Asian dictation, statistical language modeling, advanced dialog
interactions, and voice authentication. He has written more than 70 journal
and conference papers, and holds 15 patents. He has also contributed
chapters to several edited books, includingAdvances in Handwriting and
Drawing: A Multidisciplinary Approach(Paris, France: Europia, 1994),
Automatic Speech and Speaker Recognition: Advanced Topics(Norwell,
MA: Kluwer, 1996), andRobustness in Language and Speech Technology
(Dordrecht, The Netherlands: Kluwer, to be published). His research
interests include voice-driven man-machine communications, multiple
input/output modalities, and multimedia knowledge management.

Dr. Bellegarda was a member of the ARPA CSR Corpus Coordination
Committee between 1992 and 1994. He is currently a Member of the
Speech Technical Committee of the IEEE Signal Processing Society,
serving as Associate Editor of the IEEE TRANSACTIONS ONSPEECH AND

AUDIO PROCESSINGin the area of language modeling.

1296 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 8, AUGUST 2000


