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2.3. Homogeneous Coordinates

We should be happy by now. We hav ea way to represent rigid motion that is fairly
simple and intuitive:

(2.11)P′ = RP + T

So what is this homogeneous coordinates thing? Well, it turns out some people were not
happy and looked for ways to make the simple Eq. (2.11) even simpler. The problem was
the following. The rigid transformation involves two data structures and these are treated
differently: the one is multiplicative the other is additive. And if one wants to apply two
rigid transformations then one would get three terms instead of one. Furthermore, there
are operations that cannot be done by just applying Eq. (2.11), the most useful of which is
projection. But most important, some mathematicians had scribbled down some theory,
calledProjective Geometry, and were looking desperately something to try it out, pretty
much like a hammer looking for a nail. Luckily, very little of this thing survives today,
since every transformation, projection, etc can be done more conveniently with a few
lowly matrices and vectors. All that survives and is useful from this theory can be
explained in about half a lecture hour. So assume as before that
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are the coordinates of a 3-D point before and after the motion, and
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whereR andT are the rotation and translation as before. It is easy then to verify that

(2.12)P′ = TP

where
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and similarly forP′. SymbolsP, P′ andT are called homogeneous vectors and homoge-
neous transformation respectively.

With this simple change of notation we managed to simplify a simple formula. The
gains in simplicity increase dramatically if we change coordinate systems several times.
For instance, if we change rigid motion twice we end up with three terms if we use Eq.
(2.11) but a single term if we use Eq. (2.12).

The interpretation of a homogeneous vector is obvious. Just throw away the last ele-
ment which is unity and what is left is a familiar vector. But what happens if it is not
unity? Although it is unlikely to encounter such a situation with rigid transformations, we
will see that if we use homogeneous coordinates for projection, we will have to deal with
this. But we should not panic. Two homogeneous vectors represent the same thing if the
one is a scaled version of the other (provided that the scale factor is not zero, of course).
So we divide the homogeneous vector by the forth element and bring it in the desired
form.

3. Robot Arm Kinematics

Robotic manipulators can be of many kinds, but we will concentrate on the open
chain variety, that is the arm can be thought of as a series of links joined at joints and
ev ery joint having one degree of freedom, that is one variable parameter controlled by a
motor. Joints come in two flavours. Revolute (a.k.a. rotational), and prismatic (a.k.a. tele-
scopic).

To represent the chain of links in a mathematically tractable fashion we have to
eliminate all details that are not immediately useful. So a joint is just an axis around
which the to links can rotate (or slide) relative to each other and a link just keeps the axes
of its two joints at a fixed relative position (Fig. 3.1).

So we need two numbers to describe linki −1: the lengthai−1 of the common nor-
mal between the two axes and the angleα i−1 (twist) of the two axes relative to each other.
And we need two more to describe jointi: the distancedi between the feet of the com-
mon normals with the previous axisi −1 and the next axisi +1, and the angleθ i of these
two common normals. Eitherθ i or di are variable and controlled by a motor.

Now to do any geometry on the links and joints we have to define coordinate sys-
tems. Every link will have a coordinate system rigidly attached to it. We can put it any-
where we like and of course we like it where it is easier to do the math. After some heavy
thinking, the originators of this idea, decided to put the origin of the coordinate system of
the i −1 link on thei −1 axis, at the foot of the common normal with the next axis. The
Zi−1 axis is in the direction of thei −1 axis and theXi−1 axis is in the direction of the
common normal with the next axis. And the coordinate system of thei link is on thei
axis, at the foot of the common normal with axisi +1, theZi axis is on the axisi and the
Xi axis is on the common normal with thei +1 axis. So the transformation from the coor-
dinate systemi −1 to systemi involves a translation along axisXi−1 axis byai−1, rotation
around the same axis byα i−1, translation alongZi by di and rotation around the same axis
by θ i which can be written as
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Figure 3.1: The link i −1 holds axes i −1 and i at a fixed distance ai−1 and angle α i−1 relative to
each other. Axis i holds the two neighbor ing common normals at a distance di and an-
gle θ i .

i−1
i T = TX(ai−1)RX(α i−1)TZ(di)RZ(θ i)

which can be used to transform pointi P expressed in coordinate systemi to point i−1P
expressed in coordinate systemi −1

i−1P = i−1
i Ti P.

The above notation that uses left superscripts and subscripts to indicate the coordinate
systems involved is very useful in this business. A 7 degree of freedom robot can easily
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have 10 coordinate systems involved, so one would need up to 90 different transforma-
tions and as many symbols for them. Few alphabets can provide enough single literal
symbols.

The last thing we have to know to fully describe an arm with matrices is a couple
more conventions about what to do with the zeroth and last frames, and what to do when
the axes are parallel and there is no unique common normal. The zeroth frame (a.k.a base
frame) for a revolute (rotary) first joint shares origin with the first frame, ItsZ0 axis is the
same as the first frame’s axis Z1 and itsX0 axis is the same as the first frame’s axis X1

only if θ1 = 0. If the joint is prismatic (telescopic) thenX0 is parallel toX1 and the origins
of frames 0 and 1 coincide only ifd1 = 0. The last frameT (a.k.a. tool frame), if it is rev-
olute, has its origin at the foot of the common normal with the previous frame (since there
is no next frame) and the orientation of theXT axis is the same asXT−1 when the lastθ is
zero. If it is prismatic then axisXT is parallel to the previous XT−1 axis and the origin
coincides with the origin of the previous framesonly if θT = 0.

As it must have become obvious, the convention shows a marked preference for sim-
plicity since roboticists are paid to get the job done, not to brag about their smarts. The
same principle of simplicity can be applied to decide what to do if two axes are parallel.
In this case we select the origin to be the foot of the common normal with the previous
axis. If this fails because all axes right down to the first are parallel and none of them
prismatic, we look at the next axis, the one after the next etc until we find one that is not
parallel to the rest or one that is prismatic and choose all the origins in such a way that as
many as possibledi ’s are zero.
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