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5.1.1. Elimination of Structure Unknowns

Since we assume rigidity we know that the motion can be represented by a rotation
and a translation

(5.1)P′ = RP+ T

whereP andP′ are the position vectors of a world point before and after the motion,R is
the rotation matrix andT is the translation vector. In the relative orientation problem all
of them are unknowns. From the projective equations we have

p′ =
P′
Z′

and

p =
P

Z

where p and p′ are the projections of the world points on the image plane andZ andZ′
are thez-coordinates of pointsP and P′ respectively. If we eliminate the world points
then Eq. (5.1) becomes

(5.2)Z′p′ = ZRp+ T.

Now we hav eone equation wherep and p′ are knowns since we can measure them on the
image and all the rest are unknowns. The unknowns are of two kinds: structure unknowns
that are related to the structure of the scene, e.g. the position of the points viewed, and
motion unknowns which describe the motion.Z and Z′ belong to the first kind of
unknowns and there are two of them for each point in the scene. The motion parameters
belong to the second kind and are independent of the number of points in the scene.

To solve the problem we have to start eliminating unknowns. The strategy we follow
is to eliminate all the per-point unknowns and get an equation independent of structure.
Before we do this let us look at the balance of equations first. Eq. (5.2) is a vector equa-
tion that is equivalent to 3 scalar equations. If we eliminate the two structure unknowns Z
andZ′ we have only one equation left.

To eliminate theZ′ we can use a property of the cross product that says that the
cross product of a vector with itself is the zero vector:

a × a =
→
0

and multiply both sides of Eq. (5.2) byp′

Z′p′ × p′ = Z(Rp) × p′ + T × p′ = 0

and we still have a vector equation that is equavalent to 3 scalar ones (but they are not
independent anymore) and one less unknown. We can eliminate the remaining unknown
by using a property of the dot product that says that the dot product of two orthogonal
vectors is equal to zero. We know that the cross product ofT and p′ is another vector that
is orthogonal to bothT and p′. So if we take the dot product of both sides withT we have

142 Ch. 9. Sec. 5. Relative Orientation



Computer Vision Spetsakis

0 = Z

(Rp) × p′


⋅ T + 


T × p′


⋅ T = Z


(Rp) × p′


⋅ T.

Now assumingZ is not equal to zero (otherwise the object would be way too close to our
camera) we get

(5.3)

(Rp) × p′


⋅ T = 0.

We now hav eone scalar equation whose unknowns are the motion parameters. We can
simplify things a bit more if we notice that Eq. (5.3) is atriple scalar product. Recall that
one of the definitions of the cross product of two vectors

V1 =





a1

b1

c1






and

V2 =





a2

b2

c2






is equal to the following depterminant

(5.4)

V1 × V2 =





x̂

a1

a2

ŷ

b1

b2

ẑ

c1

c2






=

(b1c2 − b2c1) x̂ + (c1a2 − c2a1)ŷ + (a1b2 − a2b1)ẑ =






b1c2 − b2c1

c1a2 − c2a1

a1b2 − a2b1






where x̂, ŷ, ẑ are the unit vectors along the corresponding axes. IfV3 is

V3 =





a3

b3

c3






= a3 x̂ + b3 ŷ + c3ẑ

then, the triple scalar product ofV1, V2, V3 can be written as

(V1,V2,V3) = (V1 × V2) ⋅ V3 =





a3

a1

a2

b3

b1

b2

c3

c1

c2






which means that the well known properties of the determinants can be applied here.
Every time we swap two rows the determinant changes sign and in our case if we swap
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two vectors then the left hand side of (5.3) should stay zero. If we apply this property a
couple of times we get

(5.5)p′ ⋅ (T × (Rp)) = 0.

Time now for yet another representation of the cross product. Eq. (5.4) can be rewritten in
matrix form as

V1 × V2 =





b1c2 − b2c1

c1a2 − c2a1

a1b2 − a2b1






=





0

c1

−b1

−c1

0

a1

b1

−a1

0











a2

b2

c2






We can also write the dot product in matrix form:

V1 ⋅ V2 = V1
TV2 = V2

TV1

and we can write (5.5) as

p′TT̃ Rp = 0

where

T̃ =





0

tz

−ty

−tz

0

tx

ty

−tx

0






and

T =





tx

ty

tz






and if we do the substitution

(5.6)E = T̃ R

then

(5.7)p′T Ep = 0

which is the celebratedepipolar constraint and in various forms has been reinvented
many times in the history of science and engineering.

The epipolar constraint Eq. (5.7) is a very convenient equation because it is linear in
terms of the elements ofE so we can compute it from a set of point correspondences.
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