MediaMath

An Interacti ve S/stem for
Image and Audio Analysis

Introduction to MediaMath
programming language

Part 1.

Introduction to MediaMath programming language

1. A Gentle Introduction

MediaMath is designed to be easy to use and to lapkliir to the user from the first
encounterSo it ises the familiar syntax of C (with some omissions and extensions). It is an
interpreted language, BkBasic and Lisp. This means that you caredi an epression and get
the answer rightvaay. This is irvaluable for incremental debugging. It istensible in more than
one ways: one can define functions that can be called seamlessly from the interpreter and the
other is to include ne primitives in C.

The fact that it is an interas® language means that one caeceite statements interac-
tively by just typing them in
a=3.14;
b=a*2;
c=sin(b);
b=to_integer(b);
The result of eery statement is printed. Arexecutable statement can beeeuted interactiely.
And when we load a file, MediaMath pretends thataswyped in. If an error occurs then a help-
ful message is printed and we go back to the teg laterpreterWe @an see the history of func-
tion evaluations that led to the error by typing
BackTraceOld;

The \ariableBackTraceOld holds the backtrace of the previous ertoiis a list of all the
function invocations.

1.1. Asimple example

The best \ay to learn a language is by using ite Bart with a fev examples. Les write a
routine that adds three to a number.
function plus3(x)
"Adds 3 to x\n\
no matter what is the type of x\n"

{
h

We will take every piece of code one by one. First a function definition begins with trd w
function . The name and argument list folloThere are no type declarations for thguar
ments, because it is a soft typed language. Tketwe lines contain the documentation string.
This string doubles as internal documentation and on line help. After you define this function,
this string will be mailable as help. Just tyg#plus3; and this string will appeaAlso notice

X+3;

that the strings in MediaMath aredilC grings.

Now we enter the body of the function. There is only orpression here. When the func-
tion is called this statement igeeuted and the result is returned as thki® of the function. In
general, if there are mamxpressions in the body then the value of the last one is returned as the
value of the function (much lkthe progn and let of Lisp).

1.2. Anotherexample

Now we @an go into a more serious example. A function that computes the exponential of a
floating point numbeiMe rame ithewexp to avoid redefinition of the built irexp .
function newexp(x)
"New version of exp written in MediaMath;\n\
Under Development\n”

{

local temp, prev, res, i;

res = 1.0;
x = t o_float(x); /* if it is not float make it float */
i =0;
prev = -1.0;
temp = 1.0;
while (res-prev != 0.0)
{
prev = res;
i++;
temp *= x/i;
res += temp;
3
printf(“iterations: %d\n",i);
res;
3
There are a fg@ new features here. The first is tloeal keyword. It defines a @ variables as
local so that we doh’get conflicts with other routines. The local variables are accessible only
from within the functionand the functions that are called by ithis is what we calDynamic
Binding. The formal parameters in the function definition are also lamaalMes in this sense.
But bear in mind that dynamic binding is too powerful to be used often. It is better to write pro-
grams that do not care what is the binding.

The other feature is thehile statement. Its behavior is the same as ix€epet that it
returns a value: the value of the lastaited statement. There is alstoa statement for which
the same things applin the end of the function there is a debugging statement that prints the
number of iterations with a call frintf | which is modeled after the C standard library func-
tion printf

2. Syntaxof the language

The syntax is the same as C witlvfexceptions, to accommodate thefelient features of
the languages. These features are:

* Functional programming. MediaMath is a purely functional language sergthing returns
something, so we canV®datements lie3 + while (a>0) a-5 . Even the definition
of a function returns something (the symbol of the function).

e Soft typing. Variables are not bound to types. So we canehdgatements lik
a=3;a=3.1; . And of course there are no type declarations for variables. But we can
define n&v types with thestruct keyword.

* Objects. MediaMath has some object oriented features ridlti argument dispatch meth-
ods, so it has the syntax to deal with them.

* \Variable number of arguments. We can define functions with variable number ajuanents
and leywords. One can usemake_complex(3.1,4.2); or make_com-
plex(:im=3.1,:re=4.2);

. Image and matrix operators. There is a variety of operators to use for image and matrix
manipulations like al (*) s_templ; or ml<->mz2; to corvolve an mage with a tem-
plate and concatenatedwnatrices.

* No inherited mistakes. There was no reason to repeat some of the mistakes that happened
with C, like the use of caret foXOR the lack of a power operator to do thing®l® and
the funry way to access 2-d arrays wWij3][4]

Other than that the mManguages ha the same syntax.

2.1. Expressions
The expressions are composed from operators and operanaslike b+c->val

2.1.1. Operators

The operators are of three kinds: binary and unary pre and post opefédtensinary oper
ators in increasing order of precedence are:

= += -= * = | = O

I

&&

L

&

== === 1= == |l===

< > < = >=

>> <<

+ -

* / % (G () Q) <[> <>

The associativity of all the alse qoerators is from left to right with the exception of thevpo
operator and the assignment operators. The assignment expressions are a little different than the

4

rest and we deal with them in the next section. All the unary pre-operater$basame prece-
dence (it does not makense otherwise) and the same for post operators. The precedence though
of the post operators is higher than the pre operators. The pre operators are:

[~ + + -- - + ’

and the post operators are:
++ -- T

Some of these operators arevrand perform functions specific to MediaMath.

A

The power operatofhe type of the operands can bg anmber: intger, unsigned intger,
characterunsigned character or float. Depending on the type the interpreter will call the
appropriate library function to do the job.

(*) The 2-D comolution operatarOne operand must be an image or a scan line and the other a
template or both templates.

() \Vertical corvolution. When the template is one dimensional it is treated as a column. This is
useful for separable ceolutions.

(-) Horizontal corolution. As abwee kut the template is treated as aro

<|> Vertical concatenation.Wo dbjects like matrices images etc are stacked one on top of the
other.

<-> Horizontal concatenation. As al® but the concatenation is sidays.
“T Transpose. Matrix transpose operator.

' Quote. Protects its argument fromaleation. It returns the expression ualeated. This is
an advanced feature.

Range. It returns a data type that indicates range. It is used for subarray access and some
other functions that understand it.

As in most languages precedence and associativity can be changed with the use of parentheses.

2.1.2. Operands

Anything can be an operand in this language (there are some restrictions if the operation is
assignment and we deal with it lateAnything from \ariables to type definitions to function
calls, becauseverything returns something. More specificly:

» Variables: The symbols play the role of the variables. A symbol is an entity wéfalse
attributes and not just the name of a place in menidrg attritutes of a symbol are: name,
value and property list. When we type in the name o&gable the interpreter looks it up
in the hash table and finds the symbol that corresponds to the name (if this is the first time it
sees the name creates avrggmbol with functionintern). Then depending on whether it
is on the left or right side of an assignment re&seor nodifies the alue field of the sym-
bol. Soif we type
a=s;
a+3;
then in the first case we modify the value fieldaaind in the second we just accesslfit.
the second expression wagleated we would hae a @ll to gplus with 5 and 3 as

arguments.

Function calls. A function call is the same as in C withvarf@re fang/ ways to passari-

able number of guments. If the function is defined with fixed number of arguments, all the
arguments hee o be pesent in the correct orddf it has optional arguments as well then
the required arguments come first and all of thewe abe pesent, and then the optional
ones. If there are three optionafjaments and we want to specify only the last one we ha
to either specify the other twas well or use kywords. If we hae the function
make_image_info that accepts one requiredcgament and three optional ones the last
of which isfocal_length then we could use

make_image_info(img1l, :focal_length=28.2);

The keywords can be used also when the function uses a global variable but we want to use
something else for thiswocation only For instance if the functiofix_aspect consults

the global ariableaspect_ratio for the default camera but we want for one call to use
the \alue new_aspect we could write fix_aspect(img1l,
:aspect_ratio=new_aspect);

There is also a mechanism to pass to a functigonamber of parameters. The function
“sees” a list of values that can be accessed with catiartcandcdr .

Array references. There arevaml kinds of arrays already built in and one can add more.
These include the regular arrays, which are heterogeneous arrays, the matriatpthe v

the templates, the images, the scan lines and the strings. All of them can be accessed with
square brackets.

het = make_array(5,nil);

het[1]=1;

het[2]="Media";

matl = mk_fmat(1..3,1..2,[[1,2],[2,3],[3,4]]);

1 + matl[3,2];

A very useful feature is that the indices of the arrays can be ranges

vec = matl[1..2,2];

so thatvec gets assigned a vector that contains the first through second elements of the sec-
ond column of matrixnatl .

Structure references. Structures can be referenced wittr tioperator So he real value of
a omplex number isz->re . The-> operator can be used in other situations as well.

While statements. A while statement abint while (x>=3) x -= 3; returns the
vaue of the last expressiowvauated, in this casg modulo3 so the value of the whole
expression iS+(x %= 3)

For statements. A for statement also returns a value. For indtang@el; i<=10;

i++) arl[i]=i"2; will return 100.

If statements. An if statement &kf (x>0) x+1 else -x+1, will return the alue
of x+1 if x is positve and -x+1 if x is negative. If the else statement is missing threh
Is returned. Notice that there is ndefore theelse .

Compound statements. A compound statemeaf{lik ocal temp; temp = x; x =
y; y = temp; }; will return as value the value of the lageeuted statement, in this

case the original value of. Thelocal declaration is optional and canvieamary vari-
ables. Noticehat there is a after the closing brace.

Lists. A list like [2,2,5,2] is a collection of possibly heterogeneous items. It is used for
advanced programming or for passing arguments to some functionsklikeec .

Prefix statements. MediaMath ptides the means to writeveything in Lisp-like prefix
notation. For rample, x = 3*x +1 can be written ash(set $(quote x)
$(gplus $(gmult 3 x) 1)) . The prefix syntax is much morewerful but hard to
use. It is intended for advanced programming only.

Constants. There are anfdypes of constants. Thal andt are built in constantsil
represents the false value (63g=4 evduates tonil), the empty list, the null pointer and
the default initialization of uninitialized entities and it is a symbolepresents the true
value (e.g. 3==3 evduates tot) and it is a symbol. Then are the integere K5. And
floats like 3.14 or 1.2e-3 . And strings lile "MediaMath Version %d.%d\n" that
are exactly lile C grings.

Function definitions. A function definition returns the symbol that holds the functon. F
example
function my_fun(x, y, &optional z &init 3, &rest rest)
"Just an example"
{
printf("x is %d, y is %d, z is %d", X, Yy, 2);
if (rest)
{
printf(" and the rest are: ");
for (; rest; rest=cdr(rest))
printf(", %d",car(rest));
printf("0);
}
else printf(", and no rest0);
3
The \alue of this function definition is the symbaly_fun . The syntax of a function defi-
nition is the vord function , the symbol of the functiomy_fun , a parenthesized list of
the formal arguments, an optional documentation string and a compound statement. The list
of formal arguments has the foNong structure. All the required parameters, if,afirst.
The optional parameters, if ymext. We indicate that where the optional parameters start
with the word &optional . If an gptional parameter needs to be initialized then we put the
word &init after the name and then the initialization ag i&init 3 . If there are rest
arguments the wrd &rest follows and one symbol (it foes not needense to declare more
than one rest guments). The rest argument can be initialized in the saayelithere are
rest arguments we cannot usswkords.

Structure definitions. A structure definition looksdil C $ructure definition, just simpler
For example
struct complex

"Structure for complex entities."

3

z1 = make_complex(:re=2);

defines a structure with the naw@mplex , with two fields that are initialized (if we dan’
want to initialize then we omit the 0) and a documentation string. After theakiation of
the structure definition the interpreter defines the funechake _complex automatically.

It also defines the functiccomplex_p and knows he to access the fields of the structure
with the-> operator.

Generic function definitions. A generic function is a function that hdsrdift beheaior
depending on the type of the arguments providedvety €unction call. The function
gmult , that implements operatdr, is uch an gample. When the operands #igat s it
multiplies them as real numbers. When the orftos and the otheint first corverts
and then multiplies. The same for matrices, imagesletee want to extend the functional-
ity of the* operator to wrk for complex structures as well we can define & feinctions
to do the job and then teggmult how to call them.
function complex_by _complex(x,y)
{

make_complex(ire = x->re * y->re - X->im * y->im,

Aim = x->re * y->im + x->im * y->re);

I3
function number_by complex(x,y)

{
5

etc
generic gmult

{

make_complex(ire = x * y->re, :im = X * y->im);

complex, complex: '‘complex_by complex;
{ i nt, unint, float, char, unchar }, complex :
'number_by complex;
complex, { int, unint, float, char, unchar } :
‘complex_by number;
I3
When the abee datements areveluated then the multiplication will @k seamlessly for
comple numbers. Functiogmult is called generic function, and the function likum-
ber_by complex (which are normal functions) are called methods. Whegerakedata
types specialize on the same methode {iki nt, unint.. } above, then we can
enclose them in curly brackets and the interpreter will create one entry in the look up table
for each one of them.

2.2. Assignmenexpressions

An assignment is an expression that returns thevatue of the variable, the array position
or the structure field. It has the side effect that it modifies this place in meif@yassignment

operators are the same as incC+=, -= , *=, /= , %= All the following are valid statements
a = 3;

a=>b = 3+1,;

matl[3,3] = 1.1;

cm->re = 0;

a += 1;

matl[3,3] += 2;

cm->re +=1;

One can assign to giming that represents a position in memory: a symbol, an array and a struc-
ture. There are aiemore cases that an assignment cae f#ce but thas beyond the scope of
this manual.

3. Miscellaneous

No interpreted language is complete without\a feore things. First comes on line help.
There are tw ways to get information about the system. The omagiepos . If we want to find
all functions or variables that deal with images and templates we type iv@yacti
?2?"[lijlmage","[Ttlemplate";
and all the symbols that satisfy both regular expressions will apalong with one line of doc-
umentation.

The other is thelescribe function. It gves the full available documentation for this func-
tion or variable.
?gconvolve;
Both apropos anddescribe can be called as functions but the us@dfand? save s typ-
ing. We an find more information about the regular expressions in the Unix comradraid

grep .
The comments in MediaMath aredilC mmments but are not alled to span tev lines. A
comment must end in the line it started.

4. Library functions

There are seeral libraries that are accessible through MediaMath. First all the functions in
the Unix math library are accessible with the same names. Then therexiersve Lisp style
list processing librarya snall string library and miscellaneous utilities and the most important
library, the image and matrix library.

4.1. Imageand matrix library

This library introduces a set of types to operate upon, that can represent images and matri-
ces. Therd8 such types but a bit of taxonomy makes them look fewer and easy to understand.

These types are of twkinds. One dimensional and dwdimensional. Thel-D ones are
vectorsvec , scan linesscin and 1-D templatesnpl . The 2-D ones are matricesat, images
img and 2-D templatesmpl2 . So far six. Each one of them can be either ffoaintegeri or

unsigned characterc. The names of all of them are composed by the initials of the underlying
type and the short name of the type:

fvec fscln ftmpl fmat fimg ftmpl2
ivec iscln itmpl imat iimg itmpl2
ucvec ucscin uctmpl ucmat ucimg uctmpl2

4.2. Creating and destroying images and matrices

For every one of these types there is a routine to create an instargas\refix the name
of the type withmk_as inmk_fvec . All of them accept the dimension (or dimensions) of the
object as argument(s) and an optional initialization.

The indices of matrix andeetor objects of size range froml..n . The range can be spec-
ified using the range operator
mk_fvec(4);
mk_fvec(1..4,[1,2,3.3,4]);
mk_ucmat(2,3,[[1,2],[3,4],[5,6]]);
mk_ucmat(1..2,1..3,[[1,2],[3,4],[-5,-6]]);
mk_imat(1..2,4);
Notice that if we choose to write.3 we do not gie any more information. It is just diérent
style. Itis an error to writ..4 for matrix creation.

Images and scan lines are pretty similar to matrices acung but start @. All the fol-
lowing statements are valid:
mk_fimg(128,128);
mk_fimg(0..127,0..127);
mk_fimg(0..1,0..1,[[1,2],[1,2]]);
mk_ucsciIn(0..255);

Notice that the first tav gatements do exactly the same thing.

The range of templates can be anything, sy #ne not constrained to start from zero or
one. And we can use either a range or the bounds of the range like:
mk_ftmpl(-2,2);
mk_ftmpl(-2..2);
mk_ftmpl2(-1..1,-2..2);
mk_ftmpl(-3,3,[1,1,1,0,2,2,2)]);

We dould not be particularly concerned with deallocation of these data structures, although
they are big, because there is an efficient garbage collector to do that. The garbage collector
scans the memorywery now and then and finds data that are inaccessible and deallocates them.
But if we feel the wye to deallocate something there is a set of routines to do that. All of them
arefree_ followed by the name of the data type likee_fimg

4.3. Accessingmages and matrices

We @n access the elements iryai the abeoe data structures using the same syntax as
with arrays.
al[3];

10

a2[3,3];

whereal has one dimension ara® has two. Nothing would be differentafl anda2 where
vector and matrix or scan line and image or one ammdwmension template. The result will be

of the same type as the underlying type of the structure (float if it is a matrix of floats, integer if it
is a matrix of integers etc). Also we can write

al[2..4];

a2[2..5,4];

a2[2,2..4);

a2[2..4,2..4];

to get part ol or a2. The type of the result of the almerations is of the same or thexhe
smaller type that would fit it. E.g. #1 anda2 where vector and matrix the first three lines
above would return a gctor and the forth a matrix. If thevere scan line and image the first
three should return scan line and the last an image. bounds of the result might be shifted to
follow the cowentions. Theabove expressions can appear to the left of the right of an assign-
ment statement. For more information lookgearef andgraset

In mary cases during a computation we might need the size of a matrix or a temmate. W
can use the> operator to access them but not to modify the e.g.
al->vmin;
al->vmax;
al->vsize;
a2->hmin;
a2->hmax;
a2->hsize;
a2->vmin;
az2->vmax;
az2->vsize;
The initial v indicates vertical dimension and the initraindicates horizontal. Aactor a £an
line or a template are assumed, byweotion to be vertical

4.4. Buildingimages and matrices

We @n concatenate twimages or tw matrices together to mala bgger matrix or image.
If the underlying types are @i#rent the one is upgraded to the other (an unsigned character to
integer and an integer to floating point)eWAn concatenate an image and a scan line or a scan
line and a numbeiThe same goes for matrices vectors and numbers. The concatenation opera-
tions cannot be used for templates.
al = mk_fvec(1..2,[10,20]);
a2 =mk_fmat(1..2,1..2,[[1,2],[3,4]]);

al<->al,; I* 2x2 matrix */
al<|>al, I* 2X2 matrix */
al<->az; I* 2x3 matrix */
al<|>az; I* 3x2 matrix */

T Since the vertical indeis written first the(x,y) point of an imagém isim[y,x]

11

az<|>az; I* 4x2 matrix */
az2<->az; I* 2x4 matrix */
al<|>3; I* 3x1 vector */
We would get similar results if we had scan lines and images instead of vectors and matrices.

4.5. Corvolutions

There are three cwolution operators. The general eofution operato*) which applies
to images and templates (you cannotvobre two images though) when there is no ambiguity of
the orientation of these data structures. The horizé¢ntalthat means that the template is hori-
zontal and the verticd]) that means that the template is vertical.
im1 = mk_fimg(4,4,[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1]});
t1 = mk_ftmpl2(-1,1,-1,1,[[0,1,0],[1,0,-1],[0,-1,0]]);
im1(*t1;
t1(*)t1;
t4 = mk_ftmpl(0..2,[-1,0,1]);
t1(-)t4;
t1(|)t4;
im1(-)t4;
im1(|)t4;
t4(-)t4;
t4(|)t4;
There is one more cuention regarding comwolutions. The templates are considered zero outside
their bounds (this does not affect array access, if we requesaltiee of a template outside its
bounds we get aArrayOutOfBounds error signal). The images are periodic so the whole
plane is tiled with the same image. So when wevd@oe an mage (or a scan line) with a tem-
plate the size of the resulting image is the same as the original. Whenwslredno templates
the resulting template is bigger that the originals.

4.6. Arithmetic operations

Most of the operations that apply to numbers apply to images, matrices and templates as
well. The abwe mnvention (that templates are considered zero outside their bounds and images
are periodic) applies here also. These operations on matrices and vectors are the linear algebra
operations. Dot product is done using transposition.
v1°T *v2;

These operations work between images, matrices etc and numbees/tberenwvould expect. All
operations are done in floating point (it is faster on most modern machines).

There is an important ddrence between arithmetic with images and numbers. The opera-
tions
a = b;
a += 2;
have dfferent effects wheb is a number or an image. If it is a number the operaior= 2;
creates a ve object to store the numbdf it is an image then it modifies the object that contains
the image by adding 2 towey element. This is a mechanism tmial allocating nev images or

12

matrices under the programmers control. It can bayatar optimize the code for speed or ayw
to introduce bugs.

5. Math library

The whole math library can be accessed through MediaMath using the same names. There
is some minor loss of accusabecause MediaMath uses single floating point arithmetic. All of
them hae a &ort line of documentationFor more information look at the Unix man pages. The
functions are:

Trigonometric

acos asin atan

atan2 cos hypot

sin tan

Exponential

acosh asinh atanh

cosh exp expl0

exp2 expml log

log10 loglp log2

sinh tanh

Bessel

jo i1 jn

y0 yl yn
Miscellaneous

cbrt erf erfc

fabs remainder sgrt

Limits

finite infinity isinf

isnan isnormal issubnormal
iszero max_normal max_subnormal
min_normal min_subnormal signbit

6. List processing library

The internal representation of MediaMath is influenced by Lisp. As a result it comes with
an tensve list processing libraryThis library is usefull for implementing serious extensions to
the system, but the typical user does not need tovhe @f its existence, sa a ouple of func-
tions to handl&rest arguments.

append assoc assq

atom boundp car

cdr compose_symbol compose_symbol_soft
cons consp copy

copy_alist delq eq

13

fboundp
get

intern

list
make_list
makunbound
nlistp

nth

put
range_cons
reverse

set

symbol_function
symbol_value

fmakunbound
getenv
intern_soft
listp
make_string
memq
not
nthcdr
range_car
rassoc
rplaca
setplist

symbol_name

symbolp

fset
getenvlist
length
make_array
make_symbol
nconc
nreverse
null
range_cdr
rassq

rplacd

setq
symbol_plist
time

For each one of them there is on line documentatigangles etc. It is a fairly complete list pro-
cessing system, that could support symbolic computation etc.

14

MediaMath

An Interacti ve S/stem for
Image and Audio Analysis

Run time linking of C modules.

15

Part 2.

Run time linking of C modules

1. Owerview of the C modules

The MediaMath system priales a simple mechanism to extend its functionality by adding
functions written in C. The mechanism is fundamental to the system and ndtafeature. It
is used by the delopers to write eerything except the central part of the interpretés such it
is extensvely debugged and tested during thevalepment. It does not incur grspeed penalty
and it is intended to be simple andkitde, and easy to master for somebody familiar with the
UNIX ™ system.

Modules written in C can be linked and unkwkto the gecutable at run time by a simple
command, e.g. if the module is named “hough.so” you can load it with the c0|¢1mand
dlopen("hough.so0");

If for some reason you want to unlink “hough.so” then

diclose("hough.so");

is enough. You rarely need thisviver. If while using “hough.so” you diseer a bug you can
go back to the C code of “hough.so” correct thg bnd link it again in the same manngne
old version is automaticly unlinked and you will notice no sidecef This comes in handy when
you discoer a bug and you already kia a ouple of hours useful work in the memaory.

The C routines hee t be written in a certain style in order to be linked. The interpreter has
to be informed of the name of the function the number gidiraents, the type of function (for
most of the things you would kkto do he type “function” is enough; the others are macro and
special form, people familiar with Lisp should recognize thelt)en the documentation has to
be provided. All this seems quite avethead for the programmemut two mechanisms are pro-
vided to mak this task trivial. First there is an emacs function to insert a header template for all
this information. The user has just to fill it uﬁ'he rest are done automaticly by the second
mechanism that uses the awk language: The C source file is scannedvidy program that
extracts this information from the headers and writes the appropriate code to inform the inter
preter Agan, this mechanism is very well tested because thisvisdighe functions of the sys-
tem are written. As a result a substantial part of the code and the declarations are produced by the
awk program.

All the aiguments to your C functions that are going to be called by the interpreter are of
type L_Ptr which stands for “lisp pointer”. This is a pointer to a union that can accommodate

T Users familiar with SunOs will realize that the name is borrowed from there. The actual fullogen_lisp that is called in re-
sponse does little more than set up the arguments for calling Slo@s when working on a Sun

A programmer that alays puts headers at thediening of his functions should notVeany poblem with that (assuming such a pro-
grammer exists)

16

all the types used by the system including the ones you are going to define in your modules. It is
the responsibility of the programmer to check if the types wrapped in the union are acceptable. A
wide variety of cpp macros are prded to mak this easylf the types of the arguments are
deemed acceptable then you can use them directlyifateelisp types (lile wns cells, lisp
arrays, nil etc). Otherwise there C types and you ha o extract them. Another set of cpp
macros is provided for this purpose.

The last issue is theagbage collectoLuckily for the most part you should not worry about
it. The garbage collector is called only from within teal function and in general only
advanced system utilities normally calVal . But in case you dohhavea doice you can use
one of two mechanisms: Either suspend garbage collection for the duration of this eadlltQ
a gmple but wasteful technique, or protect thguaments and variables of your function. The
reason you hae do me of these is that the garbage collector will mess up anything that he
thinks is inaccessible and thus useless. So your function has to notify the garbage collector that
its local variables are accessible.

When you start a memodule you hee © first copy into a fresh directory the contents of
the ModulePrototype that contains a simptamaple. You can add and reuwgofiles with C code
or declarations (*.c and *.h) to write your own module. Youehta edit the makefile to let the
malke uility know your SRC files and your local headers. Then you type
make setup
and you are ready to start. Put your C declarations in a .h file and your C code in a .c file. The
first thing you write is routines to generate and dgstnetances of the data types you declare.
Before &ery function that can be called by the interpreter include a heladay function first
checks the type of its @gmments and extracts the corresponding C values from them. Then most
of them should call a function to do the actuarkvand use the result to construct a Lisp data
type to be returned. After youvewitten enough routines that can be tested together type
make -k
to compile and link with the dynamic load®&ou hare a nodule ready to be linked to an already
running MediaMath. Type
dlopen("hough.so");
at the MediaMath prompt and you are ready to call your routines in exactly the same fashion as
ary routine in the system.

2. Writing a ample function

Let's write a very simple function that accepts onguanent, a Float and returns the sine of
it using the standard math librasin . This does not need ymew C ypes other than Float so
we dont need a .h file. Notice that the type Float is capitalized, which means that is not the
same afloat . Itis a cmmpile time option to specify Float as either float of double.

The first thing to do is to create a headfeyou are using emacs andvedoaded the appro-
priate emacs lisp files just typeeta-h . A ten line header will be inserted and yowéd® fill it
out.

/*aWkStaI’t**
Name: mysin
MinArgs: 1

17

MaxArgs: 1

Type: function

Synopsis: mysin(<float>)

Doc: This function computes the sine of <float>.

Doc: It is just an example of how to write simple functions.
Example: mysin(3.14/2);

**awksto p*/

L_Ptr mysin(Lnum)
L_Ptr Lnum,;

{

Float fres;

if 'FLOATP(Lnum))

error_signal(Smysin,SWrongTypeArg,Sfloatp,Lhum);

f = X FLOAT(Lnum);

res = sin(f);

return C_2 L _float(res);
}
This is hav your function will look like. If you use one of the files piied you can just cop
your function in and compile by typingeta-x compile . You can load your function in a
running MediaMath by typinglopen("example.so") L Try it

Lets look at these fields one by one. First the name field provides no surpriag.(3té
minaigs and maxargs fields are what one would expect too. The type of the function is “function”
which means that the arguments to your function eakiaed. In other words if you hia the

sequence
a = 1.0
b = nmysin(a);

then your function will see theloat 1.0 whereas if it vasspecialfrm (special form) then
your function would see the symlelWwhich is not comenient here.

The net field is synopsis. It just gés a ynopsis of the syntax of the function. It is up to
the programmer to choose if hamis to write<float> or <number>. The next field is doc.
This can be seral lines long but each line has to start wittDm¢: ”. Thefirst line of these is
kept as a string in the main memory so that the apropos command can read it to try to match
strings. So better ka a god summary of the description as a first line. All the lines go to a file
“mysin.doc” to be read by the help commartdnally the example field records aMeimple
examples to be used by the help command.

The header seems pretty straightforwardasdtfdoes not get that much more complicated.
The body of the function is also simple.

Both the arguments and the return value are pointers to this catchall union. The first thing to do is
to check if the argument is indeedFi@at . This is done with the cpp macro FRADP(). If you

are using emacs you can typeta-x c-macro-expand to see what it is doing. Just checks

a number stored in the first amd of the data structure. If the test isgaese then the
error_signal function is called to signal the errgrint a message and return to the read

18

evd loop. The message contains what is in tigeiraents of therror_signal call. Lets hae

a look into each one of them. The first argumer&nsysin . This is the symbol whose valye is
the actual function. You danhaveto declare and initialize it. This is done by thﬂ(éprogran%.
Every function that can bevoked by the interpreterhas a symbol which has the same name
(there are tw exceptions to this) and there isvalys a variable that points to it. The name of the
variable is the same as the name of the function witB attached before it.

The next field iISWrongTypeArg . This is the error message. Notice the funapitaliza-
tion. Words that dom’haveto be typed in often use it. Error messages are among thexim g
provide the symboBWrongTypeArg . The user can retnve the documentation of this symbol
to get more information on this type of error.

The next field is the comment field eWaveSfloatp to give a hint that floatp wuld fall
for this type of argument. The programmer shoulie gihatever might help the user find what
kind of error happened. The last argument is the value that did the damage.

If the test is positie then the recution goes on. At this pont we kmdhat the argument is a
Float . We @an extract it using thEFLOATmacro. This returns thi€loat stored in the third
word of the data structure and you can see it by expanding the macro with emacs.

We havethe actual value of thEloat now, 0 we @ll sin which returns anothdfloat
(well actually double) which we pass as argument to the fun€ién L _float (which stands
for C to LispFloat). This function creates a data structure to holdRlbat that has all the
correct tags etc. This is whaysin returns.

2.1. Improving our first module

If you were to add this module to the system, yawh surprise the usdfirst the function
sin is calledmysin . Second gen in a gaticly typed language l&k ANSI C, one can ge an
integer as an argument to a function that neddea . Lets see ho we an fix it.

We @n try to change the name of the functiosito from mysin . That would be an ii-
tation for trouble becausen is the name of the math library functione\eready sa how this
problem was sokd. If you notice the example about dynamic linking\apahe name of the
function dlopen is knaovn inside the C code by the namdmpen_lisp . Our function is
mysin both inside the interpreter and inside the C program.

The whole job is done by the awk programs. When a function is declared by a name that
ends with_lisp like dlopen_lisp the awk programs keep owersions of the name: one
with and one withoutlisp in the end. The one without is what appears in the run time hash
table of the system and the one wilisp is what the C compiler and the linker see. Sy the
are not confused by the names.

The other problem can also be easily solved. One can replace the check
if (FLOATP(Lnum))
T a yymbol is a collection of three things: the name which is a string, the value which can be anything or undefined and the property list

where ag combination of lkey value pairs can be stored. The property list is used mainly by the system to store important information and if you
don't know what your are doing lea it dlone. A symbol can be interned in a hash table, in which case it can beeddiydts name.

19

error_signal(Smysin,SWrongTypeArg,Sfloatp,Lhum);

with
Lnum = to_float(Lnum);

Functionto_float returns a&Float if Lnumis corvertible toFloat , or 9gnals an error oth-
erwise. After the call tao_float we knav thatLnum is aFloat . The rest of the program
proceeds in the sameaw We lved a problem but we created another one. If the useidps
sin with an irvalid type, the error will be issued ig_float and there is no simple way to
trace the origin of the erronf this is a concern then the best thing to do is an error checking
inside sin . You can use thaumberp function for that. numberp returns symbot if the
argument is a number and otherwise. The program then would look like
/*awkstart**
Name: sin_lisp
Minargs: 1
Maxargs: 1
Type: function
Synopsis: sin(<number>)
Doc: This function computes the sine of <number>.
Doc: It is just an example of how to write simple functions.
Example: sin(3);

**awksto p*/

L_Ptr sin_lisp(Lhum)
L_Ptr Lnum;
{
Float fres;
if (NULLP(numberp(Lnum)))
error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
res = sin(f);
return C_2 L _float(res);
}
Notice the use of the macNlULLPthat checks if the function returhdL . You could write
NIL == numberp(Lnum)
or
St = numberP(Lnum);
whereSt andNIL are thet andnil in the C environment.

At this point we knav enough to write ay simple function. With the help of the Reference
Manual we can write grfunction that does not needwgypes, variable arguments, garbage col-
lector protection or list processing.

3. Variable Arguments

First, we hae o inform the system that we usariable arguments by declaring fdifent
minimum and maximum number of them. If the maximum numbergiraents is infinite use

20

-1.

The awk program is going to do all the work to notify the interpreter aboutghmants of
this function. The interpreter will match one by one the minimum numbegoifremts and will
put the rest in a list andwg it as he last argument. So your program has to accept the minimum
plus one number of arguments.

Let’'s write a function that computes the sine of a numthext accepts an optionalgar
ment, that when nonil instead of the sine computes the hyperbolic sine. The code should look
like this
/*aWkStaI’t**

Name: sin_lisp

Minargs: 1

Maxargs: 2

Type: function

Synopsis: sin(<number>[,<hyper>])

Doc: Computes the sine of <number>. With optional non nil
Doc: argument computes the hyperbolic sine. It is just

Doc: an example of how to write simple functions with

Doc: variable args

Example: sin(3,t);

**awksto p*/

L_Ptr sin_lisp(Lnum,rest)
L_Ptr Lnum, rest;
{
Float f,res;
if (NULLP(numberp(Lnum)))
error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
if '(NULLP(rest))
{
if ((NULLP(cdr(rest)))
error_signal(Ssin_lisp,STooManyArgs,NIL,rest);
if ((NULLP(car(rest))) return C_2_L_float(sinh(f));
}
return C_2_L_float(sin(f));
}
The code is easy to fol If no sscond argument is supplied then resitils . If a second agu-
ment is supplied it is a list that can be accessedamithandcdr . For those notdmiliar with
Lisp, car returns the first element of a list andr the rest of the list. The statemaht
('NULLP(cdr(rest))) checks if more than 2 arguments are supplied, in which case an

21

error is signaled. The interpreter does not check forqhat.

3.1. Addinga few more features

This function does a pretty good job, butdetake it a kit fancier If a sscond argument is
supplied it should be eithéyperbolic or periodic . This way the user is forced to include
these words in his function call making the code more readable; youngea to look up the
manual to find out what’going on, it is there.

First of all we hae let the interpreter ko about the symboldyperbolic and
periodic . This would be automatic inside a running MediaMath system, because the symbols
are interned immediately as thare encountered. But inside the C code youeha intern it
yourself and keep a global variable around to access iauldwe a lot of trouble to do it manu-
ally but the svk program does it for you. The mechanism is very similar to the headers for func-
tions. It would look lile this
/*awkvarstart**

Name: hyperbolic

Doc: Flag symbol. If present as the second arg of a trig
Doc: function, it returns the hyperbolic counterpart
Value:

**awkvarsto p*/

/*aw kvarstart**

Name: periodic

Doc: Flag symbol. The opposite of the hyperbolic flag.

Value:

**awkvarsto p*/

If you are using emacs you typeeta-p and an empty will appearA global variable is
declared for each head&hyperbolic andSperiodic . You may notice the same a@n-
tion. The leadings means symbol. If the value field is present, a glohabble with the same
value is declared that points to this valuee’Wsee its most common use when we talk about
types. Here we do not use the value field.

Thedoc entry does xactly the same job as in function headers. If we use the same sym-
bols anywhere in the module then we dawdefine them. If some other module has declared
them too, then the last doc string and the lastiesr are kept and nothing else changes. If you
want to avoid that then you ha 1 use the import mechanism.

Now that we hae sen hav to introduce n& symbols we are ready to proceed with the
code.
/*awkstart**
Name: sin_lisp
Minargs: 1
Maxargs: 2
Type: function

O

You might notice that the actual value MfixArgs , is irrelevant. It only matters if it is equal or not MinArgs .

22

Synopsis: sin(<number>[,{hyperbolic, periodic}])

Doc: Computes the sine of <number>. If the optional argument
Doc: is hyperbolic then the hyperbolic sine is returned. If

Doc: it is missing or it is periodic the periodic sine is

Doc: returned. It is just an example of how to write simple

Doc: functions with variable args that use new symbols.
Example: sin(3,’hyperbolic);

**awksto p*/

L_Ptr sin_lisp(Lnum,rest)
L_Ptr Lnum, rest;
{
Float f,res;
if (NULLP(numberp(Lnum)))
error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
if (NULLP(rest))
{
L_Ptr temp;

if '(NULLP(cdr(rest)))
error_signal(Ssin_lisp,STooManyArgs,NIL,rest);
temp = car(rest);
if (temp == Shyperbolic) return C_2_L _float(sinh(f));
if (temp != Speriodic)
error_signal(Ssin_lisp,SUnexpectedArg,NIL,rest);
}
return C_2_L float(sin(f));
}
Again Shyperbolic and Speriodic are the symbols that inside a running MediaMath are
hyperbolic and periodic . Also notice in the xample abwe that we hae t© quote
hyperbolic to avoid evaluation. If we leae it unquoted then we will trigger an error.

4. Types

Before we explain he to introduce n& types we hee o describe the type system. In this
section we talk about oto introduce types and operations that handlesadional C struc-
tures, hav to make the garbage collector dispose them and the printing routines display them.

4.1. Classification

All the types used in the MediaMath belong in one ab tategories: Lisp types and C
types. The Lisp types are further classified\eted and unesled, e.g. ones that tleval func-
tion of the interpreterva@luates and returns the result or does maluate and returns them as
they are.

23

The lisp types that can beauated are among others the symbol (the value field of the
symbol is returned) and the function call which is a list of a function and its arguments (the result
of the function call is returned.). Theawation procedure is complicated and it is described
elsewhere.

The types that are novatuated are almost all the rest: an araagructure, nil etc. In other
words these types represent themsglvAllthe C types are also urated.

C types are also classified indwategories. “Small” and “lage”. “Small” are all the prede-
fined ones and “large” are all the ones defined by the Tlsername comes from the fact that
most of the predefined ones are “small” (charsgmtgFloat s, etc) whereas most of the user
defined ones are “large” (images, matrices, etc). (See fig. 1)

4.2. Runtime representation

Every lisp object is an array of words. Every word is the same size as the pointer on the par
ticular machine. The first ovd of the array is the header which contains the markbit (for the
mark and sweepagbage collector), the type tag which is a number that represents the type and
one more integers for thextension. Theextension represents different kinds of information
depending on the type. For all lisp types contains the size of the aeraif the size is implicit
in the type (lile ns cell which has size 2). For C types the use of thigentearies. Some of
the predefined C types do not use it. Othesthle ones that represent C functions use it to store
the minimum number of guments. Theiser defined types use the extension to store the actual
number that represents the type (the type tag contains only the number that corresponds to

All types
Lisp types C types
Evaled Unevaled Predefined| | User defined
Cons Nulltype Unint In_stream
Symbol Regulartype Int Out_stream
Keytype Specialtype Float DI_handle
Selecttype Unchar Fimg
Defaulttype Char Ucimg
Stmg Fmat
Function Fvec
Vfunction etc...
Specialfr
Vspecialfrm
Macro
Vmacro
(Large)

Fig. 1. All the types in the MediaMath system.

24

“large”, a kind of escape tag).

The “large” type tag does not correspond tg aal type. It is just an extension tag togak
care of the user defined types. In other words the funtmsn of will never returnlarge
All the user defined types are allocated numbers that are then stored in the extension in the
headerThe allocation is done by the system (funcitoeate_C_type takes care of this) and
may vary from gecution to &ecution. (See fig. 2)

4.3. Keeping track of the types

The functiontype_of will return a symbol which is the name of the type. It is the symbol
int for integer, the symbolffloat for a floating numbeithe symbolffimg for a floating point
image etc. This we call type name. The value of the type name is initially undefined (and the user
can define it without gninterference with the type system).

The next symbol wolved in the types is thBypenum symbol. This is symbahtType-
num for integer, symbol floatTypenum for a floating numbersymbol fimgTypenum for a
floating point image etc. The rule to generateTigpenum symbol from the name is vious.
The value of th&@ypenum symbol is theTypenum, an nteger unique to this type, at least dur
ing a session. Théypenum of a predefined type is stored in the type fieldwaheinstance of
the type. Thél'ypenum of the user defined C types is stored in the extension of the héhier
symbol contains most of the information needed for typechecking etc and its name makes it hard
for the user to use it accidentally as a variable.

The property lists of these symbols contain most of the useful information. The property list
of the name symbol has the propeftypenum which is the correspondingypenum symbol.

| | 4 |sym | | 2 |c0ns | | XXXX |integ..
name —1 p» |[car —1 » [Unused

value —~1 p [cdr —1 - [int

rop. list —1 »

prop Cons cell Integer

next — »

Symbol

| | XXXX |string | | n |vfun. | |typenurTFarge
Unused Unused Unused

“char —» (L_Pr()0)) —f— [void —t—
String Vfunction (n args) String

Fig. 2. Internal representation of various types.

"The same is true for thepecial type. It is an escape for all the user defined lisp structures. Again the fugpgonf will never re-
turnspecial .

25

This gives a faster way to get th€ypenum symbol than constructing the symbol from its string
andintern ing it. It also holds the first line of the documentation in Bree property The
Typenum symbol contains a bit more information. First thec property contains the same
documentation line. Then tidéame property contains the name symbol. Tbestroy prop-

erty, present in user defined C types, contains the function that can be called hybtégegcol-

lector to deallocate the type (free the space for an image, close a file etc). It can also contain the
Printer property to print an instance of the type (present in some C types).

Given the name or th&@ypenum symbol of a type you can find all the informatioraik
able to the system. Butwgn the Typenum integer you cannot do it easilyror this purpose
there is thaype_array which maps these integers to the corresponding symbols.

4.4. Defininga new C type

After this brief exposition of the type system it is clear that it is not easy to deal all the
details. For this reason there are tools to isolate the user from it. Definingtygeds as easy as
defining theTypenum and at least one function to deallocate it (if deallocation does na mak
sense, still this function has to be defined to do nothing and just Mitujn Again the awk pro-
gram does most of theonk with the help of a couple of functions, macros and simplgepen
tions.

4.4.1. Example:define floating image types

We @an hae a bok into a real type ma It is not worth to find a tg example to do the intro-
duction because it is really simple by itself. The code comes fronmiigeBasics module
and not the core interpretéut it would be exactly the same if it was from the interpreter.

As most modulesmageBasics defines tw levds of functions, one and tw The first
level functions do the actual work and do not deal with headers, data types, error checking etc.
They accept arguments that had their headers veth¢e.g. aFloat is aFloat and not an
L_Ptr whose tag is=LOAT). They are not called directly from the interpreter andytlde® ot
call ary high level function including error handlein general gery effort has to be taken so that
these functions can be used with as little modification as possible in other packages as library
functions. And of course the oppositeyaublic domain function should easily fit among the
level one functions. The &l two functions do all the error checking, type casting etc and then
call one or more lesl one functions. It is then obvious thawéetwo functions require some
familiarity with MediaMath whereas Vel one are coventional functions. So we present only
level two code.

All the level two code we need in order to define a floating point image type is listed.belo
We mght need to do a bit more than that, tedha ©mplete abstract data type,dikwite func-
tions to access or modify a pixel, addtimages, display an image etc.

/*aWkstart**
Name: mksimple_fimg

MinArgs: 2

MaxArgs: 2

Type: function

26

Synopsis: mksimple_fimg(<vdim>,<hdim>)

Doc: Allocates an image with <vdim> rows and <hdim> columns.
SEE: free_fimg, mksimple_fimg

Example:

**aMVkSUJp*/

L_Ptr mksimple_fimg(vdim,hdim)
L_Ptr vdim, hdim;
{
int Cvdim, Chdim,;
ftwo_Dptr fimg;
L_Ptrres;

TO_INT(vdim,Cvdim,Smksimple_fimg);
TO_INT(hdim,Chdim,Smksimple_fimg);

if ((Cvdim <= 0)||(Chdim <=10))
error_signal(Smksimple_fimg,SNonPosSize,NIL,LIST2(vdim,hdim));

fimg = mk_ftwo_D(0,Cvdim-1,0,Chdim-1);

res= C_2 L_large((void*)fimg,XtypenumDefinition(SfimgTypenum));
return res;

The function abee dlocates an instance of a floating pont imégey . It accepts as guments

the dimensions of the image. It first extracts the integer values of the dimensions (cpp macro
TO_INT does the draction and typechecking in a smart way). Some additional error checking
follows. Then space for the image is allocated by funai@nftwo D , which allocates space

for two dimensional objects I&images and matrices. This function returns a pointer tovly ne
allocated C structure. Then functianksimple_fimg returns this pointer encased in a struc-
ture that has a headdihe encasing is done Ity 2 L large that accepts tawvaguments: the
pointer to the image structure and thgoenum as a plain intger. XtypenumDefinition(Sfimg-
Typenum) can help locate it.

* kkkkkkkkkkhkkkkhkkkhkkkkhkkkhkkkkkkhkhkkhhkkhkkihhkkhhkkhhkkkhhkkhhkkkk
[*awkstart

Name: free_fimg

MinArgs: 1

MaxArgs: 1

Type: function

Synopsis: (free_fimg <fimg>)

Doc: Frees the space allocated to <fimg>. It is called

Doc: automatically by GC when <fimg> is no longer accessible.
SEE: mk_fimg

27

Example: free_fimg(mk_fimg(100,100));

**awksto p*/

L_Ptr free_fimg(fimg)
L_Ptr fimg;
{
if {CHK_TYPE(Sfimg,fimg))
error_signal(Sfree_fimg,SWrongTypeArg,NIL,fimg);

if (NULLP((L_Ptr)XLARGE(fimg))) return NIL;
free_ftwo_D(XLARGE(fimg));

XLARGE(fimg) = (void*)NIL;
return NIL;

The only function we need to define tovhaa escent data type fsee_fimg . This function
has to be defined, otherwise the Garbage Collector will nat kvtzat to do with arfimg if it
sees one that is inaccessiblEhat’s a $mple routine that first checks the type of thguanent,
then makes sure that the data structure is not freed already (tleatamis that the pointer to
the data structure inside the header is replaced with.aif the image is already freed). Then
frees the data structure and sets the no longer valid pointer in the heldtlerttoobey the con-
vention.

* kkkkkkkhkkkhkkkkhkkkkhkkkkhkkkhkkkkhkkhkkhkhhkkkkihhkkhhkkhhkkkhhkkhhkkkk
[*awkstart

Name: print_fimg

MinArgs: 1

MaxArgs: 1

Type: function

Synopsis: print_fimg(<fimg>)

Doc: Prints <fimg>. Normaly it is invoked by the
Doc: read-eval-print loop.

SEE: prin

Example: print_fimg(a[1..10,5..10]);

**awksto p*/

L_Ptr print_fimg(fimg)
L_Ptr fimg;
{

if {CHK_LIVETYPE(Sfimg,fimg))
error_signal(Sprint_fimg,SWrongTypeArg,NIL,NIL);

print_ftwo_D((ftwo_Dptr)XLARGE(fimg));
return fimg;

28

The functionprint_fimg is optional. If we do not define it the functipnn that is called to
print the result of an operation is going to print something by default which mightwaysabe
useful. Ifwe define it then functioprin is going to look for it and use it.

The function by itself is ery simple: MacrcCHK_LIVETYPEtells if the type is correct and not
already freed (the user can free an instance of a type sinfreehémg is available to him)
and then calls a function that does the printing. As all functions relaf@thto, it has to return
its argument.

/*aw kvarstart**

Name: fimgTypenum
Doc: Type symbol. The type of an image of floats.
Value: create_C_type(SfimgTypenum,"print_fimg","free_fimg");

**awkvarsto p*/

And in order to inform the world that awedata structure as born we use the good oldla
headers. The ceoentions are simple. The name has thdisufypenum. The Doc line contains
the stringType symbol to male it easy to search with apropos. The Value part is just a call to
create_C type , with the symbol of the type a firstgament, an optional name (C string) of
the function that can print the data type as a secapdreent and the name of the function that
frees it as the third. The routiceeate C_type() does all the work (which would be pretty
complicated otherwise) l&kputting the appropriate things in the hash table, initializing the prop-
erty lists of the appropriate symbols and allocating mteger to represent the nédwypenum.

5. Linking

Most of the details of linking are taken care of by di@pen . There is one more though
that dlopen cannot do. When we catllopen the following things happen. The dynamic
linker is called and all theaviables in the module that are undefined are linked to the core inter
preter Then the functiomnit that should be present imeey module is called and inserts in the
hash table of the interpreter the names of the functions thataiiabke in the module. What is
still needed is to link the function symbols in thevnmodule to functions in other modules
which should be already loaded. In other words take of the interdependence of the modules.
This is a difficult job to do forvery module so there is a simple tool for that: yet another header!
If you use emacs then the sequenmda-m will create an empty header for you to fiAs an
example lets e hav other modules would use the moduiteageBasics
/*awkl m po rtstart***

Module: image.so
Symbol: CannotReadimg
Symbol: CannotWritelmg
Symbol: IncopatibleSizes
Symbol: NonConfRange
Symbol: NonPosSize

29

Symbol: fimgTypenum
Symbol: fmatTypenum
Symbol: fsclnTypenum
etc...

Function: free_fimg
Function: free_fmat
Function: free_fscln
Function: free_ftmpl
Function: free_ftmpl2
Function: free_fvec
etc..

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkkkk aWkl m po rtsto p*/

The first line is the module that these functions or symbols come ffbmname is the name of
the shared object that contains the module. If it is not already there itad.lifiherest are the
names of the symbols and functions that the n@dule needs to get from the ImageBasics.
These functions can be used theyvamere in the n& module and hae o be fined only once.
All the details lile C ceclarations etc are taken care of.

30

MediaMath

An Interacti ve S/stem for
Image and Audio Analysis

C modules: Reference manual

31

Part 3.

C modules: Reference manual

1. General

The MediaMath interpreter is structuredelik Lisp interpreterEvery data structure has a
header of typainion L_Header . Any agument to ap function and ay value ay function
returns is a pointer tb_Header which istypedef ed toL_Ptr . Any function is thus defined
to returnL_Ptr and all the arguments to functions are of typdtr . Any dbject that is
defined ad._Ptr we call tagged object and it is actually just a pointer.

All the typechecking is done as a result in run time. Facilities axedeito check the type
of an object, extract the actual value of an object and to create an object with a header out of a
corventional C type.

2. Lisptypes

There are tw major kinds of types. The lisp types and the C types. The lisp types contain
only other tagged objects. TREONSype for instance contains a pointer to the first element of a
list and the rest of the list. For all these types weigeomacros and functions for typechecking,
accessing (and modifying) and creation.

A lisp type can be thought of as an array of tagged int XREGLEN(t_obj)

objects. Thdength of this array can beteacted with the L_Ptr t_obj;
macro XREGLEN(t_obj) where t obj is ary lisp
object.

The Lisp types are:
SPECIALTYPE REGULARTYPE CONS
SYMBOL NULLTYPE SELECTTYPE
DEFAULTTYPE KEYTYPE RANGETYPE

All the aboe types are intended for advanced MediaMath programming and can be ignored by
the casual module writtefhe recommended method of manipulating these structures is with the
high level routines that are pvaded, which are also documented and accessible within the
MediaMath interpreter.

SPECIALTYPE

Description:
The type ofstruct . Should not be normally used by C functions.

Typechecking:

32

SPECIALP(t_obj,sz) : cpp macro that returns 1 if int SPECIALP(t_obj,s2)
t _obj isSPECIALTYPEand has lengtlsz, O ather- L_Ptrt_obj;

wise. Ifsz is zero does not check for size. int s2;

Access:
XPTR(t_obj+n) : cpp macro that returns the" L_Ptr XPTR(t_obj+n)
field oft_obj . The fields are numbered starting from :-n_tFr:t_r t_obj;

2. It is better to ussref to do the same thing. The L_Ptr sref(curr_tnum,strct,indx)

typenum of thet obj is XPTR(t_obj+1) . When L Ptr curr_tnum, strct, indx:
the macro appears on the left side of an assignment__Ptr sset(curr_tnum,strct,indx,obj)
statement it will modify the contents bfobj . Agan L_Ptr curr_tnum, strct, indx, obj;
it is better to useset .

Creation:
mk_typenum_struct(num,sz) . It creates a L_Ptrmk_typenum_struct(num,sz)

structure withtypenumnum and sizesz . L_Ptr num, sz;

REGULARTYPE

Description:
The type of an array of lisp pointers. Every pointer can point to a different kind of element.
It can be used to hold a sequence of images or a set of templates, etc.

Typechecking:
REGULARP(t_obj,sz) :cpp macro that returns 1 if int REGULARP(t_obj,sz)
t_obj isREGULARTYPENd has lengtisz, 0 ather- L_Ptr t_obj;
wise. Ifsz is zero does not check for size. ntsz;

Access:
XPTR(t_obj+n) : cpp macro that returns tm" ele- L_Ptr XPTR(t_obj+n)
ment oft_obj . The elements are numbered starting :-n—t':t_r t_obj;

from 1. It is better tousearef to do the same thing.
When the macro appears on the left side of an assign-
ment statement it will modify the contentstobbj

It is better to usaset .

aset(array, intgr, elm) . Set theintgr th L_Ptr aset(arr,indx,elm)
element of lis@rray toelm and returrelm. L_Ptrarr, indx, elm;

aref(arr,indx) . Access theindx element of L_Ptr aref(arr,indx)
arr L_Ptr arr, indx;
Creation:

33

make_array(len,elm) . Returns a ne& array L_Ptr make_array(len,elm)
1..len evay element of which contairem . L_Ptrlen, elm;

CONS

Description:
The type of a list. The name comes from lisp. Lists aefl@aded with uses. The carry the
multiple aguments for arguments declar@cest |, they are the internal representation for
MediaMath programs (in a Lisp style), as well as ordinary lists for general programming.
There is an exteng list processing library to manipulate them.

Typechecking:
CONSP(t_obj) returns non-zero ift obj is a int CONSP(t_obj)
cons cell zero otherwise. WhilBlIL is the empty list L_Ptrt_obj;
CONSP(NIL) will return zero for that.

Access:
XPTR(t_obj+1) returns thecar of the list (eg. the L_Ptr XPTR(t_obj+n)

first element) L_Ptrt_obj;

XPTR(t_obj+2) returns thecdr of the list (eg. the ntn;

rest of the list). Both of the can appear in the left side

of an assignment statement to set ta@ and the

cdr of acons cell.

The recommended ay to access them is using

car(l) and cdr(l) and to modify them

rplaca(l,elm) andrplacd(l,tl)

car(cell) and cdr(cell) : Return the first and L_Ptrcdr(cell)

second element of corsll . If cell is viewed as a L_Ptr cell

. . . . L_Ptr car(cell)

list the meaning is that thiereturn the first element L Ptr cell:

and the rest of the list. B

rplaca(l,elm) and rplacd(l,tl) ; L_Ptr rplaca(lst,newel)

rplaca(l,elm) replaces the car of liswith elm. L_Ptr Ist,newel;
. . L_Ptr rplacd(Ist,newel)

rplacd(l,tl) replaces the cdr of list witth . L_Ptr Ist.newel:

Creation:
cons(a,b) creates @ons cell witha andb as ele- L_Ptr cons(a,b)
ments. L_Ptra, b;

34

LIST2(el1,el2)..LIST6(ell..el6) : Asim- L_Ptr LIST2(ell,el2)
ple and covenient way to create lists up to length 6. L_Ptrell, el2;

SYMBOL

Description:
The type of a symbol. Symbols seras \ariables, place holders, function names etcyThe
are structures that contain four fields: name, value, property list and nextcarhbe in a
hash table in which case thare called intern ed and outside a hash table in which case
they are called umtern ed. The next field sees only for the external chaining of the
hash table and works better if left alone.

Typechecking:
SYMBOLP(t_obj) : returns non-zero if obj is a L_Ptr SYMBOLP(t_obyj)
symbol, zero otherwise. WhilnlIL is considered a L_Ptrt_obj;
symbolSYMBOLP(NIL) returns zero.

Access:
XPTR(t_obj+pos) : returns the name, value, prop- L_Ptr XPTR(t_obj+pos)
erty list, or next whenpos is NAME_POSTN L_Ptr t_obj;
VALU POSTN PLIST POSTN NEXT _POSTN nt pos;
XPTR(t_obj+pos) can appear on the left side of
an assignment statement.

Creation:
intern(str,NIL) : Returns an interned symbol L_Ptrintern(name,tblist)

with namestr . The second gument has to bNIL L_Ptr name, thllst

for future \ersions that will support multiple hash
tables. If the symbol does not alreadyseit is cre-
ated and the initialalue for the value field I§NDEF
(undefined), for the property liffIL and the net
field is used by the hash table. If there is a symbol
with this name in the hash table it is simply returned.

intern_soft(str,NIL) ; Same as L_Ptr intern_soft(str,tbllst)
intern(str,NIL) but if the symbol does not L_Pitr str, thlist;
exist, it is not created.

make_symbol(str) : Just creates a symbol with L_Ptrmake_symbol(str)

the namestr without interning it. This means that if L_Ptrstr;

we call this function twice with the samegaments
we get tw different symbols, whereastern will
return the same symbol. Also note that if we loose
track of an umtern ed symbol we cannot find it
aqain. This function is used only for aatwed pro-
gramming using macros.

35

NULLTYPE

Description:
The type of NIL. Cannot be accessed, cannot be modified, it is created only once during the
initialization of a session. It should be seen as simil&UaL of standard C programming.

Typechecking:
NULLP(t_obj) :returns non-zero if obj is NIL, int NULLP(t_obj)
zero otherwise. L_Ptrt_obj;
SELECTTYPE
Description:

The type of a selection. Selection is the object that represents a generic function. It is an
array that contains either selections or functionslar. For instance if the generic function
dispatches on the twfirst aguments then it is an array of selections which in turn are
arrays of functions. Every selection array cameha nmix of selections, functions d¥IL s,

to dispatch on one or moregaments. ANIL means that there is no function defined for

this combination of argument types if tiBEFAULTTYPEentry is alsoNIL . If the
DEFAULTTYPEentry is notNIL then this is the function that corresponds to the combina-
tion of argument types.

Typechecking:
SELECTP(t_obj,sz) : Returns non-zero if obj int SELECTP(t_obj,sz)
is a selection of sizez . If sz is zero there is no size L_Ptr t_obj;
checking. int sz,
selectp(t_obj) : returns nomNIL if t obj is a L_Ptr selectp(t_obj)
L_Ptrt obj;

selection. Thigs the recommended way to typecheck.

Access:
XPTR(t_obj+typenum) : Returns the selection for L_Ptr XPTR(t_obj+typenum)

type typenum . Typenum is an integer that repre- L_Ptr t_obj;

sents the corresponding type. It cannot be eBifrE- It typenum;
CIALTYPE or LARGESsince both are not single types

but whole classes of types.

get_selection(t_obj,Ist) st is a list of L_Ptr get_selection(t_obj,Ist_n)
integers (i1, i2, ...) representingtypenums and L_Ptrt_obj, Ist_n;

t obj is a selection.Get_selection retrieves

the i1 element oft_obj , then the id element of
that and so on until either the list isep or a ron
selection object is found which is returned. This is the
recommended way to retvie a €lection.

Creation:

36

add_selection(smbl,Ist) . this function is L_Ptr add_selection(smbl,Ist)
called in response to generic definition. When L_Ptr smbl, Ist;
called from within the MediaMath it does notakiate

its arguments, but if it is called from C bebsilike an

ordinary function. It assigns the selection object to

smbl , but whensmbl already contains a selection

then this is updated. Embl contains a function this

function becomes the drflt, so whateer used to

work before for this function continues to work.

DEFAULT TYPE

Description:
There is no instance of this type. It merely exists so that selection functions fall back to this
when the find aNIL .

KEYTYPE

Description:
The type of the structure that represergg\kalue pairs. It appears in thegament list of
functions that contain ds eg. write_eps _img(imgl, “face.eps”,
-dpi=2*res); . Itis a gructure that contains tfields: a symbol, in this casipi , and
a\value, in this case the structure that represents the piece d*rede.

Typechecking:

KEYP(t_obj) :returns non-zero if obj is a ley. int KEYP(t_obj)

ACCESS: L_Ptrt obj;
XPTR(t_obj+pos) : returns the symbol or the L_PtrXPTR(t_obj+pos)
value of the ley. Pos is eitherKEY NAME_POSTN h]_tPtgst__obJ:
or KEY_VALU_POSTNIt can appear on the left side Pos;
of an assignment statement.

KEY_SYMBOL(t_obj) andKEY_VALUE(t_obj) L_Ptr KEY_SYMI§OL(I_0bj)
return the symbol and theale of the ky t_obj L pr ;E\i)tr\;ﬂitl)jif(t obi)
They can appear on the left side of an assignment — = | "5\ obj :
statement. -

Creation:
key cons(smbl,t_obj) : returns a n@ cell with L_Ptr key_cons(smbl,t_obj)

smbl andt obj as symbol and value. L_Ptr smbl, t_obj;

RANGETYPE

Description:
The type of the structure that represents a range. It appears iguheeat list of functions,
or array dereferencing, that contain ranges e.qpk ftmpl(-2..2,
[-1,2,-3,2,-1]); . Itis a gructure that contains tmumbers in this cas€ and?2.

37

Typechecking:

RANGEP(t_obj) : returns non-zero if obj is a int RANGEP(t_obyj)

range. L_Ptr t_obj;
Access:

XPTR(t_obj+pos) :returns the from and to part of L_Ptr XPTR(t_obj+pos)

the range.Pos is either RANGE_INT1_POSTNor iLn—tF;‘;St_—ObJ?

RANGE_INT2_POSTNIt can appear on the left side
of an assignment statement.

RANGE_INT1(t_obj) and L_Ptr RANGE_INT1(t_obj)
RANGE_INT2(t_obj) return the from and to num- L_Ptr t_obj; .
bers of the range. Thieean appear on the left side of L_Ptr RANGE_INT2(t_obj)

) L_Ptrt _obj;
an assignment statement.
Creation:
range_cons(intl,int2) . returns a ne cell L_Ptr range_cons(int1,int2)
with intl andint2 for from and to part of the L_Ptrintl, int2;
range.
3. Cobjects

C objects contain a tag and agtgar C type lile integer float, string (pointer ttNULL ter-
minated string), image or file pointe€ objects are again of twmain types: small and Ige.
Smaller or equal in size to a pointer is small and all else is large. Small ones are stored after the
header and large ones are stored somewhere else and the pointer to this else is stored after the
headerThe lage types are not defined in compilation type but in load time (e.g. when Media-
Math is started or when awamodule is loaded) so melamge types can be defined dynamically
The extraC_info field has various uses: function types, macro types etc use it to store the min-
imum number of arguments. Large types use it to store the typenum, amoi@aearay of sym-
bols that hee dl the needed info in their property lists. Every type has such a typenum.

typedef union L_Header *L_Ptr;

typedef union L_Header
{
struct

{
unsigned int mrkbit:1; /* GC marker bit */
unsigned int usrmrkbit:1; /* Why not give one to the luser */
unsigned int C_info:22; /* Info about C_types (typenum) */

unsigned int type:8; /*One of C_TYPE or L_TYPE */
/* Always UNEVALED is on */
/* The six first bits describe ~ */
/* the C data type */
} C;
} L _Header;

38

3.1. Typechecking, Accessing and Creating

For every C data type understood by MediaMath there is an accégsecheckr and a cre-
ator. The first two ae macros the later are functions.

Type Typecheck Accesser Creator
UNINT UNINTEGERP XUNINT C_2_L_uninteger(uninteger)
unsigned int uninteger;
INT INTEGERP XINT C_2 L _integer(integer)
int integer;
FLOAT FLOATP XFLOAT C_2_L _float(fl)
float fl;
UNCHAR UNCHARP XUNCHAR C_2_ L _unchar(unch)
unsigned char unch;
CHAR CHARP XCHAR C_2_L_char(ch)
char ch;
STRNG STRNGP XSTRNG C_2_ L_string(str)
char *str;
LARGE LARGEP XLARGE C_2 L large(C_obj,typenum)
L_Ptr C_obj;
int typenum;
FUNCTION FUNCTIONP XFUNCTION C_2_L_function(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;
VFUNCTION VFUNCTIONP XFUNCTION C_2 L _function(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;
SPECIALFRM SPECIALFRMP XSPECIALFRM C_2 L_specialfrm(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;
VSPECIALFRM VSPECIALFRMP XSPECIALFRM C_2 L_specialfrm(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;
MACRO MACROP XMACRO C_2 L _macro(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;
VMACRO VMACROP XMACRO C_2_L_macro(fun,minarg,maxarg)

Each one of the abe types has the following use:

L_Ptr (*fun)();
int minarg, maxarg;

Type Comment Casted to
UNINT unsigned integer unsigned int
INT signed integer int

FLOAT float float
UNCHAR unsigned character unsigned char
CHAR signed character char
STRNG NULL terminated string char *
LARGE anything larger than a pointer void *
FUNCTION Function with fied numbepf args (L_Ptr ("))
VFUNCTION Function with varying args (L_Ptr ("))
SPECIALFRM Special fixed (L_Ptr ("))

39

VSPECIALFRM Special varying (L_Ptr ()
MACRO Macro fixed (L_Ptr ()0)
VMACRO Macro varying (L_Ptr (90)

All the above types are very uniform in mothey are accessed, typechecked and created.
The only exception is theARGEtype that is not really a type but a class of types. All the type-
checking macros accept one argument and return non zero ifjtiveeart is of the correspond-
ing type. The accesser macros accept gignaent a Lisp object and return the corresponding C
object. The creator functions accept as argument a C type and return a lisp type.

The lage types use the accesser and creator with a type cast (it is not necessary to use casts
but it makes it more portable). The al® mentionedLARGEPwill return non zero if the gu-
ment is a large type, but we hardlyeeneed that, because an image aneéeor are both lge
andXLARGHloes not distinguish them.

CHK_LIVETYPE(tname,t_obj) which returns non-nil int CHK_LIVETYPE(tname,t_obj)
if the type oft_obj istname (tname does not end with Etylfe”a”:)ef tname;
Typenum,; this is appended by the mac_ro_) gnd itis not as ; CHK_—T:(rFfE(()théme’t_obj)
yet deallocated. If we ant to check only if it is of the cor <typename> tname:

rect type we doCHK_TYPE(thame,t obj)) . We @n L_Ptrt_obj;

check if it is still usable witiALIVE(t_obj) that returns int ALIVE(t_obj)

zero ift_obj is deallocated. L_Ptrt_obj;

The typenum of a lge object can be extracted with int XLARGE_TYPENUM(t_obj)
XLARGE_TYPENUM(t_obj). The recommended ay ~ L_Pwrtob; .
though is to useint_get typenum(t_obj) that 'm'm[gﬁ,tt??/ F:)eb?;um(t—om)

returns thetypenum of t obj no matter if it is lage,
integer or structure.

3.2. Corverting
There are functions that camt between various kinds of numerical types. These are:

L_Ptr to_integer(num)
L_Ptr num;

L_Ptr to_uninteger(num)
L_Ptr num;

L_Ptr to_float(hum)
L_Ptr num;

L_Ptr to_char(num)
L_Ptr num;

L_Ptr to_unchar(num)
L_Ptr num;

All these functions accept onggament and return a tagged object of typegetaunsigned inte-
ger, float, character and unsigned character res@hctiThey will convert anything thg can and
issue an error if thecannot.

Quite often these functions are the preferrealy io typecheck a functioas’aguments,
because with one statement we can typecheck anertand do it consistently.

40

4. Imagesand matrices

The image and matrix data types are defined ifithege.so” module. Thg are 18 dif-
ferent types. Thecan be classified in mgrdifferent ways: According to dimensionality there
are one (the first three columns below) oo thmensional (the last three columns).

fvec fscin ftmpl fmat fimg ftmpl2
ivec iscln itmpl imat iimg itmpl2
ucvec ucscin uctmpl ucmat ucimg uctmpl2

According to the underlying data type: floating (first line \edointeger (second line) and
unsigned character (third line). And according to functionality: matrix-vector for linear algebra
operations, image-scanline for image operations and 1d template - 2d templatedhutions.

There are a f@ conventions about these types. Theotdimensional types ha the \ertical
dimension and the horizontal dimension. Sytlaimg that relates to one of thedwimensions of
the data structure has either ar anh in front of it as invmax or hconvol_fimg_ftmpl

Another corention is that an image or a scanline of dizés from O toN -1 asin C, lnt a
matrix or vector of sizé\ is from 1 toN. And a template is from anything to anything.

All of the abwe data types are tagged objects of type large. Thatysctir@ain a pointer to
a cornventional C data structure that holds the image or dutov There are six such data struc-
tures pointed to by pointers of type:

fone_Dptr used by: fvec fscln ftmpl

ione_Dptr used by: ivec iscln itmpl

ucone_Dptr used by: ucvec ucscin uctmpl
ftwo_Dptr used by: fmat fimg ftmpl2

itwo_Dptr used by: imat iimg itmpl2

uctwo_Dptr used by: ucmat ucimg uctmpl2

We havethree diferent tagged objects sharing the same C structure so that operagansliik
plication can work differently on matrices and images.

The C structures that hold the floating point image or matrix data are:

typedef struct fone_D *fone_Dptr;
typedef struct ftwo_D *ftwo_Dptr;

typedef struct fone_D

{
int vmin, vmax; [* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */
float *fdata; [* pointer to vmin positions */
/* before the beginning of the */
[* array */
} f one D;
typedef struct ftwo_D
{
int vmin, vmax;
int hmin, hmax; [* the upper left and lower right */

41

/* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/

float **fdata; /* a pointer that points vmin */
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
/* beginning of every row. */
} f two_D;

The reason that the pointers pomtin or hmin positions before the actual data is te cir
cumventa[0]..a[n-1] convention of C. So if pointea pointsvmin positions before the
actual first element of an array thaivmin] will be the first element of the arraphis way we
can hae araysa[vmin]..a[vmax] for arbitraryvmin andvmax and the inde of the first
element of a vector or a template can be different than ZBEn@&s technique might not be
portable to architectures that use paged segmented mdmoayse ANSI C does not require it.

The rows in the 2D structure are allocated all at once from a contiguous space. #nbse w
to visit the whole matrix/image can start fré&a[vmin][hmin] and increment until the end
of the whole matrix.

The type definition for unsigned character structures and integer structures is similar.

typedef struct ucone_D *ucone_Dptr;
typedef struct uctwo_D *uctwo_Dptr;

typedef struct ucone_D

{
int vmin, vmax; [* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */
unsigned char *ucdata; /* pointer to vmin positions */
/* before the beginning of the */
[* array */
} ucone_D;

typedef struct uctwo_D

{
int vmin, vmax;
int hmin, hmax; [* the upper left and lower right */
/* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/
unsigned char **ucdata; [* a pointer that points vmin */
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
[* beginning of every row. */
} uctwo D;

typedef struct ione_D *ione_Dptr;
typedef struct itwo_D *itwo_Dptr;

42

typedef struct ione_D

{
int vmin, vmax; [* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */
int *idata; [* pointer to vmin positions */
/* before the beginning of the *
[* array *
} i one_D;
typedef struct itwo_D
{
int vmin, vmax;
int hmin, hmax; * the upper left and lower right */
[* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/
int **idata; /* a pointer that points vmin *
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
/* beginning of every row. */
} i two_D;

4.1. Accessinghe first and the last

There are a f@ macros that return the address of the first and the last element or pixel of a
matrix or image.

unsigned char *UC2DFIRST(twoD)
uctwo_Dptr twoD;

unsigned char *UC2DLAST (twoD)
uctwo_Dptr twoD;

int *I2DFIRST(twoD)
itwo_Dptr twoD;

int *I2DLAST(twoD)
itwo_Dptr twoD;

float *F2DFIRST(twoD)
ftwo_Dptr twoD;

float *F2DLAST (twoD)
ftwo_Dptr twoD;

unsigned char *UC1DFIRST(oneD)
ucone_Dptr oneD;

unsigned char *UC1DLAST(oneD)
ucone_Dptr oneD;

int *IL.DFIRST(oneD)
ione_Dptr oneD;

int *I.DLAST(oneD)
ione_Dptr oneD;

float *F1DFIRST(oneD)
fone_Dptr oneD;

float *F1IDLAST(oneD)
fone_Dptr oneD;

43

The argument has to be a pointer to the C structure, not a tagged object.

4.2. Corverting

Most types can be coeted from one to the othefhe functions that do that are:

to_fvec to_fscln to_ftmpl
to_fmat to_fimg to_ftmpl2
to_ivec to_iscln to_itmpl
to_imat to_iimg to_itmpl2
to_ucvec to_ucscln to_uctmpl
to_ucmat to_ucimg to_uctmpl2

These turn to the corresponding type whatecan be

turned. All of them accept asgament a tagged type, and

return another tagged type.

4.3. Creating and destroying

L_Ptr to_fvec(t_obj)
L_Ptrt _obj;
L_Ptr to_fscin(t_obj)
L_Ptrt _obj;
etc...

There are functions to create and destneages and matrices.

mksimple_fmat(vdim,hdim) . Allocates an matrix
with vdim rows andhdim columns.

mksimple_fimg(vdim,hdim) . Allocates an image
with vdim rows andhdim columns.

mksimple_ftmpl2(vmin,vmax,hmin,hmax)
Allocates an 2D template frommin to vmax and hmin
to hmax.

mksimple_fvec(vdim) . Allocates a vector of floats

with vdim elements.
mksimple_ftmpl(vmin,vmax)
of floats fromvmin to vmax.

. Allocates atemplate

mksimple_fscin(vdim) Allocates a scanline of

floats withvdim elements.

L_Ptr mksimple_fmat(vdim,hdim)
L_Ptr vdim, hdim;

L_Ptr mksimple_fimg(vdim,hdim)
L_Ptr vdim, hdim;

L_Ptr mksimple_ftmpl2(vmin,vmax,
hmin,hmax)
L_Ptr vmin,vmax,hmin,hmax;

L_Ptr mksimple_fvec(vdim)
L_Ptr vdim;

L_Ptr mksimple_ftmpl(vmin,vmax)
L_Ptr vmin,vmax;

L_Ptr mksimple_fscIn(vdim)
L_Ptr vdim;

The functions abee, are for floating point. There is a set for unsigned characters and one for

integers. Just replace thewith uc ori .

There is a set of routines to deallocate images, matrices etc, and can bexpdibéty.e

Normaly these are called by the garbage collector.

free_fvec free_fscln free_ftmpl
free_fmat free_fimg free_ftmpl2
free_ivec free_iscin free_itmpl
free_imat free_iimg free_itmpl2
free_ucvec free_ucscin free_uctmpl
free_ucmat free_ucimg free_uctmpl2

44

All of them accept as argument the tagged object we want to discard and\iéturll parts of
the abject that were obtained wmalloc() are freed and the object is marked so that the
macroALIVE returns 0.

The casual writer of C modules will use a fraction only of thesalmacros and functions.
It is better if we see their use with avfexamples.

5. Examples

5.1. Thresholding an image

We @an study hw to accept arguments, create arrays that return the result etc. by having a
look atthresh_fimg . Like any function that is accessible from MediaMath, it has a header
that can be created on emacs by typgT A-x. This will create a header that we can fill up.

It is a good practice to separate thev@rfunction from the actual function that does the
work. thresh_fimg is just the dwer function and does all the error checking and data type
manipulation.

[rawkstart**rrrrrttiiiookokokokotokkooookokobokoooekkkookokooook
Name: thresh_fimg
MinArgs: 2
MaxArgs: 2
Type: function
Synopsis: thresh_fimg(,<number>)
Doc: Threshold an image of floats.
Doc: Returns an image of unsigned characters of the same size as
Doc: that is 1 where exceeds <number> and 0 everywhere else.
Doc: All operations are in float.
SEE: max_fimg, min_fimg
Example: thresh_fimg(img1,10);
Fikkkkkkkkkkoke k- awk stop*/

L_Ptr thresh_fimg(img,Inum)
L_Ptr img,Inum;
{

L_Ptrres;
int vd, hd;
ftwo_Dptr fimg;
float num;

img = to_fimg(img);
Inum = to_float(Inum);

num = XFLOAT (Inum);
fimg = (ftwo_Dptr)XLARGE(img);

vd = fimg->vmax-fimg->vmin+1;
hd = fimg->hmax-fimg->hmin+1;
res = mksimple_ucimg(C_2_L_integer(vd),C_2 L integer(hd));

ftwo_D_thresh(fimg, num, (uctwo_Dptr) XLARGE(res));

45

return res;

}

Every well behaed function that is callable from MediaMath should typecheck its arguments. If
ary argument is not among the kinds we expect then we issue an Hueor we cowert every
argument to the most coenient type. If we want for instance a numbge an accept an inte-
ger, a float, an unsigned character etc, and then weetoio the type we really ant: a float. ®
make life easier we just catb_float to corvert it to float (if it cannot be coerted then func-

tion to_float will issue an error). The same goes for imagé€his explains the first tav
executable lines.

If all went well then we extract the contents of these thjects. Remembgeverything
that is declaredl_Ptr is a whole data structure that contains tags etc. If the tag says there is an
integer inside or an image we\v®a get it out. . can use the accesser macros to do that. The
XLARGEmMacro requires casting because it can be used foy types including images, matri-
ces and vectors. And that is what the next liwes do.

The next three lines create the image that will store the resuit.ektract the dimensions
of the image (notice that although we wnthat for an imagéimg->vmin is zero, we still do
the subtraction tovaid having to rewrite it if the definition of an imageeebecomes more gen-
eral) and then calinksimple_ucimg . This is a function that can be called from the Media-
Math interpreter also so needs tagged objects as arguments.

After we do all these we pass the proper arguments tovartanal C routine that kves
nothing about MediaMath tags and headers. d80 provide the space to it to store the result
(again usingKLARGE. Andthen we return the result.

The functionftwo D thresh does the actual work. It has minimum interference with
the rest of MediaMath and can be used in other programs.dadibes not do anerror check-
ing other than things that cannot be clestkut by the dvier function abwee (in this case there is
nothing that cannot be checked by the calling function.

int ftwo_D_thresh(fimg,num,res)
ftwo_Dptr fimg;
uctwo_Dptr res;
float num;

int vmin, vmax, hmin, hmax;
intij;

float *ff;

unsigned char *fr;

vmin = fimg->vmin;
vmax = fimg->vmax;
hmin = fimg->hmin;
hmax = fimg->hmax;

ff = F2DFIRST(fimg);
fr = UC2DFIRST(res);

for (i=vmin; i<=vmax; i++)

46

for (j=hmin; j<=hmax; j++)
{
if (num > *(ff++)) *(fr++) = 0;
else *(fr++) = 1,
}

return O;

}

The first thing the function does is retrgethe sizes of the image. The first 4 statements do just
this. The next tw get the address of the first pixof both the source image and the resulting

image. Both of them & the same number of s (the diwver function made sure of that). This

is what the tw next statements do. The reset of statements is the double for-loop that does

the job It simply scans the tawvimages at the same time.

The macro$2DFIRST andUC2DFIRSTreturn the address of the first pixel. It is guaran-
teed that the rows of an image ocgepnsecutre daces in memoryso for simple operations we
can just scan from the top left to the bottom right image continuously.

5.2. Normof an image

Another example is theorm_fimg function. It accepts asgument an image and returns

a floating point number.

[rawkstart**rrrrrttiiookokokokookkooookobokoookkookookooook
Name: norm_fimg

MinArgs: 1

MaxArgs: 1

Type: function

Synopsis: norm_fimg(<fimg>)

Doc: Returns the Frobenious norm of <fimg>.

SEE: gnorm

Example: gnorm(mk_fimg(2,3,[[1,2,3],[4,5,6]]));
Fikkkkkkkkkekekkokkkee k- awk stop*/

L_Ptr norm_fimg(fimg)
L_Ptr fimg;
{

if \CHK_LIVETYPE(Sfimg,fimg))
error_signal(Snorm_fimg,SWrongTypeArg,NIL,fimg);

return C_2 L float(ftwo_D_norm((ftwo_Dptr)XLARGE(fimg)));
}

The drver of this function is much simpler because we need not allocagtenaage or other
structure. The function only checks if the argument is an image of floating point numbers and it
is alive (hot deallocated). It then calfswo D _norm to do the work which returns a float
which is passed t6_2 L float to put a tag on it. That'it.

Functionftwo_D_norm is no more difficult. It accepts asgament a tw dimensional
function and returns a float (the argument in this functionas because it is also used for the

matrix norm (Frobenious)).

47

float ftwo_D_norm(mat)
ftwo_Dptr mat;
{ . ..
int ij;
int imin, imax, jmin, jmax;
register float *ff1, temp, res;

imin = mat->vmin;

imax = mat->vmax;

jmin = mat->hmin;

jmax = mat->hmax;

ffl = F2DFIRST(mat);

res = 0;
for (i=imin; i<=imax; i++)
for (j=jmin; j<=jmax; j++)

{
temp = *(ff1++);
res += temp*temp;
}
return sqrt(res);

}

The function retriees the bounds of the array and the address of the first element and the scans
the whole array accumulating the result in tlagiableres . It then returns the square root of
res .

5.3. Transpose a matrix

The transpose routine is a bit tyckecause the transpose of a matrix might becor
when the matrix has onewand maly columns.

/*aWkstart**

Name: transp_fmat

MinArgs: 1

MaxArgs: 1

Type: function

Synopsis: transp_fmat(<fmat>)

Doc: Returns the transpose of a matrix.
SEE: gtranspose

Example: mk_fmat(2,2,[[1,2],[3,4]])°T;

**awksto p*/

L_Ptr transp_fmat(fmat)
L_Ptr fmat;

{
ftwo_Dptr mat;
L_Ptrres;
int vd, hd;

if \CHK_LIVETYPE(Sfmat,fmat))
error_signal(Stransp_fmat,SWrongTypeArg,NIL,fmat);

48

mat = (ftwo_Dptr)XLARGE(fmat);

vd = mat->vmax-mat->vmin+1;
hd = mat->hmax-mat->hmin+1;
if (vd==1)
{
res = mksimple_fvec(C_2_L_integer(hd));
ftwo_D_transposel(mat,(fone_Dptr)XLARGE(res));
}

else

{
res = mksimple_fmat(C_2_ L _integer(hd),C_2 L _integer(vd));
ftwo_D_transpose(mat,(ftwo_Dptr) XLARGE(res));

}

return res;

}

After we check if the type is what we expect, we extract the pointer to the C structure and we get
the size of the matrix. & dieck the number of rows to decide which version of
ftwo_D_transpose we call. The allocation is done inside the because we need to allocate
different structures in each case.

The other interesting thing abawansp_fmat is thatftwo_D_transpose scans the
array in two different ways: by incrementing the pointer starting from the beginning of the array
and by explicit array references.

int ftwo_D_transpose(mat,res)
ftwo_Dptr mat, res;
{ . ..
int ij;
int imin,jmin,imax,jmax;
float *ff1, **fr;

imin = mat->vmin;
imax = mat->vmax;
jmin = mat->hmin;
jmax = mat->hmax;

ffl = F2DFIRST(mat);
fr = res->fdata;

for (i=imin; i<=imax; i++)
for (j=jmin; j<=jmax; j++)
fr{i][i] = *(ff1++);
return O;

}

One of the tw vectors has to be scanned column by column, so wethase array referencing
for at least one of them.

49

Table of Contents

Pat 1

Introduction to MediaMath programming language

1 A Gentle INTrOAUCTION.......ooe ettt e e e e e e e e e e eeeeennees 2
1.1 ASIMPIE &IE e 2

1.2 ANOtheXample ... 3

2 Syntax of the [aNQUAGE.ooeiiii e 4
21 0] (2515 [PP PPPPPPPPRRRPN 4
P I R O o<1 = (0] £ ST PPTTRRPPPPRPN 4
PN A O | o = = o T =TSO 5
2.2 ASSIGNMENEXPIESSIONS ..ceeviririiiiniiaaaaeeeeeeeeeeeteeeeeestrsan i a e e e e e eeaaaaeeeeeeessennsnnaa s 9

3 MISCEIIANEOUS ... e e e et e e e e et b e e e e e e e e e e e eaes Q..

4 LiDrary fUNCHONS........ooeee e e e e 9
4.1 Imageand MALriX [DFAIY....... oo 9
4.2 Creatingand destroying images and MatriCeS.........couvuuurrvurmiiiiirieeeeeeeeeeeeeeeieeeienens 10
4.3 Accessingmages and MALCES........ccuiiiiiiiiiiiiiiiiaaae e e e e e e e e e e e e e e e 10
4.4 Buildingimages and MatrCESoiii et 11
4.5 (O] o] (V110 o 1< T PP 12

4.6 ArithmetiCOPEIatIONScoiiiiiiiiiiiiiii e e e e e e e et et e e e e e e e e e aeeeeeeeeeenannee 12

5 Math TIDFAIY ... e e e e e e 13
6 LiSt ProCeSSING lIDrary.....cooo o 13
Pat 2

Run time linking of C modules

1 Overview of the C MOAUIESeviiiiiiiiieeeeee e 16
2 Writing @ SIMPIE fUNCLION..........ooiiiicc e 17
2.1 Improaving our firSt MOAUIE..........eeeiiii e 19
3 Variable AQUMENES ...t e e e e e e e e e e e e e eeaesenanaes 20

3.1 Addinga few more fEatUrES..........uuuueeiiiii e e e e e, 22
4 114 S L5 T PSPPI 23..

4.1 (04 F= TS 1ST | {To%= 11 o] o TP
4.2 RUNIME rePreSENtAtiON.........iiiiiiiiiiiieiee et e e e e e e e e e e eeeeeeeeeaaaas
4.3 Keeping track Of the tYPeS........ooo i
4.4 DefiniNga MW C H/P€ ...ttt e e e e e e e e e e e e eeeenaeees 26
4.4.1 Exampledefine floating iMage tyPeS........uuuiiiiiiiiiieeeee e

5 LINKING e e e e ettt b e e e e e aaeeeees 29.
Pat 3

C modules: Reference manual

1 (€T T = | TR 32..
2] 0 I Y =TSSP
3 [0 o= X (=PRSS
3.1 Typechecking, Accessing and Creating.........ccccceeeeiereeeeeeiieeeieeireen e e e e e

GO0 1 1 1T S PPPPUPRPR 40.
4 IMAQES AN MALIICES... ..o i et e e e e e e e e e e e e e e aeeeeeeeenanens
4.1 Accessinghe first and the [aSh..........ccooviiiiiiiiiiiii e
N O] = 112 o RS 44
4.3 CreatinganNd deStNDINGccoiiiiiiiiiiiiiiiiiie eaeeeaaeaaaaranana 44
5 EXAMPIES ..o 45..
5.1 ThresholdiN@N IMaGE......uuu i e e e e e e e e e e eees
5.2 NOFMOT AN IMAGE.ueiieiiiiei e e e e e e e e e e e e e aaaeeees
5.3 TranSPOSE @ MALIIX......cciiiieiiiiiiiiiiiiee s s e e e e e e e e e et e e et e e e e e e e e e e e aaeeeaaeeeeeeessssnnnnn s

24

26

