
MediaMath
An Interacti ve System for
Image and Audio Analysis

Introduction to MediaMath
programming language

1

Part 1.

Introduction to MediaMath programming language

1. A Gentle Introduction

MediaMath is designed to be easy to use and to look familiar to the user from the first
encounter. So it uses the familiar syntax of C (with some omissions and extensions). It is an
interpreted language, like Basic and Lisp. This means that you can give it an expression and get
the answer right away. This is invaluable for incremental debugging. It is extensible in more than
one ways: one can define functions that can be called seamlessly from the interpreter and the
other is to include new primitives in C.

The fact that it is an interactive language means that one can execute statements interac-
tively by just typing them in
a=3.14;
b=a*2;
c=sin(b);
b=to_integer(b);

The result of every statement is printed. Any executable statement can be executed interactively.
And when we load a file, MediaMath pretends that it was typed in. If an error occurs then a help-
ful message is printed and we go back to the top level interpreter. We can see the history of func-
tion evaluations that led to the error by typing
BackTraceOld;

The variableBackTraceOld holds the backtrace of the previous error. It is a list of all the
function invocations.

1.1. Asimple example

The best way to learn a language is by using it. We start with a few examples. Let’s write a
routine that adds three to a number.
function plus3(x)

"Adds 3 to x\n\
no matter what is the type of x\n"
{

x+3;
};

We will take every piece of code one by one. First a function definition begins with the word
function . The name and argument list follow. There are no type declarations for the argu-
ments, because it is a soft typed language. The next two lines contain the documentation string.
This string doubles as internal documentation and on line help. After you define this function,
this string will be available as help. Just type?plus3; and this string will appear. Also notice

2

that the strings in MediaMath are like C strings.

Now we enter the body of the function. There is only one expression here. When the func-
tion is called this statement is executed and the result is returned as the value of the function. In
general, if there are many expressions in the body then the value of the last one is returned as the
value of the function (much like the progn and let of Lisp).

1.2. Anotherexample

Now we can go into a more serious example. A function that computes the exponential of a
floating point number. We name itnewexp to avoid redefinition of the built inexp .
function newexp(x)
"New version of exp written in MediaMath;\n\
Under Development\n"
{

local temp, prev, res, i;

res = 1.0;
x = t o_float(x); /* if it is not float make it float */
i = 0 ;
prev = -1.0;
temp = 1.0;
while (res-prev != 0.0)

{
prev = res;
i++;
temp *= x/i;
res += temp;

};
printf("iterations: %d\n",i);
res;

};

There are a few new features here. The first is thelocal keyword. It defines a few variables as
local so that we don’t get conflicts with other routines. The local variables are accessible only
from within the functionand the functions that are called by it.This is what we callDynamic
Binding. The formal parameters in the function definition are also local variables in this sense.
But bear in mind that dynamic binding is too powerful to be used often. It is better to write pro-
grams that do not care what is the binding.

The other feature is thewhile statement. Its behavior is the same as in C except that it
returns a value: the value of the last executed statement. There is also afor statement for which
the same things apply. In the end of the function there is a debugging statement that prints the
number of iterations with a call toprintf , which is modeled after the C standard library func-
tion printf .

3

2. Syntaxof the language

The syntax is the same as C with few exceptions, to accommodate the different features of
the languages. These features are:

• Functional programming. MediaMath is a purely functional language so everything returns
something, so we can have statements like 3 + while (a>0) a-5 . Even the definition
of a function returns something (the symbol of the function).

• Soft typing. Variables are not bound to types. So we can have statements like
a=3;a=3.1; . And of course there are no type declarations for variables. But we can
define new types with thestruct keyword.

• Objects. MediaMath has some object oriented features like multi argument dispatch meth-
ods, so it has the syntax to deal with them.

• Variable number of arguments. We can define functions with variable number of arguments
and keywords. One can usemake_complex(3.1,4.2); or make_com-
plex(:im=3.1,:re=4.2); .

• Image and matrix operators. There is a variety of operators to use for image and matrix
manipulations like a1 (*) s_templ; or m1<->m2; to convolve an image with a tem-
plate and concatenate two matrices.

• No inherited mistakes. There was no reason to repeat some of the mistakes that happened
with C, like the use of caret forXOR, the lack of a power operator to do things like 32 and
the funny way to access 2-d arrays withA[3][4] .

Other than that the two languages have the same syntax.

2.1. Expressions

The expressions are composed from operators and operands likea+1 or b+c->val .

2.1.1. Operators

The operators are of three kinds: binary and unary pre and post operators.The binary oper-
ators in increasing order of precedence are:
= += - = * = / = %= . .
||
&&
|
ˆˆ
&
== === != !== !===
< > < = >=
>> <<
+ -
* / % (*) (|) (-) <|> <->
ˆ
The associativity of all the above operators is from left to right with the exception of the power
operator and the assignment operators. The assignment expressions are a little different than the

4

rest and we deal with them in the next section. All the unary pre-operators have the same prece-
dence (it does not make sense otherwise) and the same for post operators. The precedence though
of the post operators is higher than the pre operators. The pre operators are:
! ˜ + + - - - + ’

and the post operators are:
++ -- ˆT

Some of these operators are new and perform functions specific to MediaMath.

ˆ The power operator. The type of the operands can be any number: integer, unsigned integer,
character, unsigned character or float. Depending on the type the interpreter will call the
appropriate library function to do the job.

(*) The 2-D convolution operator. One operand must be an image or a scan line and the other a
template or both templates.

(|) Vertical convolution. When the template is one dimensional it is treated as a column. This is
useful for separable convolutions.

(-) Horizontal convolution. As above but the template is treated as a row.

<|> Vertical concatenation. Two objects like matrices images etc are stacked one on top of the
other.

<-> Horizontal concatenation. As above, but the concatenation is sideways.

ˆT Transpose. Matrix transpose operator.

’ Quote. Protects its argument from evaluation. It returns the expression unevaluated. This is
an advanced feature.

.. Range. It returns a data type that indicates range. It is used for subarray access and some
other functions that understand it.

As in most languages precedence and associativity can be changed with the use of parentheses.

2.1.2. Operands

Anything can be an operand in this language (there are some restrictions if the operation is
assignment and we deal with it later).Anything from variables to type definitions to function
calls, because everything returns something. More specificly:

• Variables: The symbols play the role of the variables. A symbol is an entity with several
attributes and not just the name of a place in memory. The attributes of a symbol are: name,
value and property list. When we type in the name of a variable the interpreter looks it up
in the hash table and finds the symbol that corresponds to the name (if this is the first time it
sees the name creates a new symbol with functionintern). Then depending on whether it
is on the left or right side of an assignment retrieves or modifies the value field of the sym-
bol. Soif we type
a=5;
a+3;
then in the first case we modify the value field ofa and in the second we just access it.If
the second expression was evaluated we would have a call to gplus with 5 and 3 as

5

arguments.

• Function calls. A function call is the same as in C with a few more fancy ways to pass vari-
able number of arguments. If the function is defined with fixed number of arguments, all the
arguments have to be present in the correct order. If it has optional arguments as well then
the required arguments come first and all of them have to be present, and then the optional
ones. If there are three optional arguments and we want to specify only the last one we have
to either specify the other two as well or use keywords. If we have the function
make_image_info that accepts one required argument and three optional ones the last
of which isfocal_length then we could use
make_image_info(img1, :focal_length=28.2);
The keywords can be used also when the function uses a global variable but we want to use
something else for this invocation only. For instance if the functionfix_aspect consults
the global variableaspect_ratio for the default camera but we want for one call to use
the value new_aspect we could write fix_aspect(img1,
:aspect_ratio=new_aspect); .
There is also a mechanism to pass to a function any number of parameters. The function
“sees” a list of values that can be accessed with calls tocar andcdr .

• Array references. There are several kinds of arrays already built in and one can add more.
These include the regular arrays, which are heterogeneous arrays, the matrices, the vectors,
the templates, the images, the scan lines and the strings. All of them can be accessed with
square brackets.
het = make_array(5,nil);
het[1]=1;
het[2]="Media";
mat1 = mk_fmat(1..3,1..2,[[1,2],[2,3],[3,4]]);
1 + mat1[3,2];
A very useful feature is that the indices of the arrays can be ranges
vec = mat1[1..2,2];
so thatvec gets assigned a vector that contains the first through second elements of the sec-
ond column of matrixmat1 .

• Structure references. Structures can be referenced with the-> operator. So the real value of
a complex number isz->re . The-> operator can be used in other situations as well.

• While statements. A while statement as in5 + while (x>=3) x -= 3; returns the
value of the last expression evaluated, in this casex modulo3 so the value of the whole
expression is5+(x %= 3) .

• For statements. A for statement also returns a value. For instancefor (i=1; i<=10;
i++) ar1[i]=iˆ2; will return 100 .

• If statements. An if statement like if (x>0) x+1 else -x+1; will return the value
of x+1 if x is positive and -x+1 if x is negative. If the else statement is missing thennil
is returned. Notice that there is no; before theelse .

• Compound statements. A compound statement like { l ocal temp; temp = x; x =
y; y = temp; }; will return as value the value of the last executed statement, in this

6

case the original value ofx . The local declaration is optional and can have many vari-
ables. Noticethat there is a; after the closing brace.

• Lists. A list like [2,2,5,2] is a collection of possibly heterogeneous items. It is used for
advanced programming or for passing arguments to some functions likemk_fvec .

• Prefix statements. MediaMath provides the means to write everything in Lisp-like prefix
notation. For example, x = 3 *x +1 can be written as$(set $(quote x)
$(gplus $(gmult 3 x) 1)) . The prefix syntax is much more powerful but hard to
use. It is intended for advanced programming only.

• Constants. There are a few types of constants. Thenil and t are built in constants.nil
represents the false value (e.g.3==4 evaluates tonil), the empty list, the null pointer and
the default initialization of uninitialized entities and it is a symbol.t represents the true
value (e.g. 3==3 evaluates tot) and it is a symbol. Then are the integers like 45 . And
floats like 3.14 or 1.2e-3 . And strings like "MediaMath Version %d.%d\n" that
are exactly like C strings.

• Function definitions. A function definition returns the symbol that holds the function. For
example
function my_fun(x, y, &optional z &init 3, &rest rest)

"just an example"
{

printf("x is %d, y is %d, z is %d", x, y, z);
if (rest)
{

printf(" and the rest are: ");
for (; rest; rest=cdr(rest))

printf(", %d",car(rest));
printf("0);

}
else printf(", and no rest0);

};
The value of this function definition is the symbolmy_fun . The syntax of a function defi-
nition is the word function , the symbol of the functionmy_fun , a parenthesized list of
the formal arguments, an optional documentation string and a compound statement. The list
of formal arguments has the following structure. All the required parameters, if any, first.
The optional parameters, if any, next. We indicate that where the optional parameters start
with the word &optional . If an optional parameter needs to be initialized then we put the
word &init after the name and then the initialization as inz &init 3 . If there are rest
arguments the word &rest follows and one symbol (it foes not make sense to declare more
than one rest arguments). The rest argument can be initialized in the same way. If there are
rest arguments we cannot use keywords.

• Structure definitions. A structure definition looks like a C structure definition, just simpler.
For example
struct complex

"Structure for complex entities."

7

{
re = 0;
im = 0;

};
z1 = make_complex(:re=2);
defines a structure with the namecomplex , with two fields that are initialized (if we don’t
want to initialize then we omit the= 0) and a documentation string. After the evaluation of
the structure definition the interpreter defines the functionmake_complex automatically.
It also defines the functioncomplex_p and knows how to access the fields of the structure
with the-> operator.

• Generic function definitions. A generic function is a function that has different behavior
depending on the type of the arguments provided at every function call. The function
gmult , that implements operator* , is such an example. When the operands arefloat s it
multiplies them as real numbers. When the one isfloat and the otherint first converts
and then multiplies. The same for matrices, images etc.If we want to extend the functional-
ity of the* operator to work for complex structures as well we can define a few functions
to do the job and then tellgmult how to call them.
function complex_by_complex(x,y)
{

make_complex(:re = x->re * y->re - x->im * y->im,
:im = x->re * y->im + x->im * y->re);

};
function number_by_complex(x,y)
{

make_complex(:re = x * y->re, :im = x * y->im);
};
etc
generic gmult
{

complex, complex: ’complex_by_complex;
{ i nt, unint, float, char, unchar }, complex :

’number_by_complex;
complex, { int, unint, float, char, unchar } :

’complex_by_number;
};
When the above statements are evaluated then the multiplication will work seamlessly for
complex numbers. Functiongmult is called generic function, and the functions like num-
ber_by_complex (which are normal functions) are called methods. When several data
types specialize on the same method, like { i nt, unint.. } above, then we can
enclose them in curly brackets and the interpreter will create one entry in the look up table
for each one of them.

8

2.2. Assignmentexpressions

An assignment is an expression that returns the new value of the variable, the array position
or the structure field. It has the side effect that it modifies this place in memory. The assignment
operators are the same as in C:=, +=, -= , *= , /= , %=. All the following are valid statements
a = 3;
a = b = 3 +1;
mat1[3,3] = 1.1;
cm->re = 0;
a += 1;
mat1[3,3] += 2;
cm->re += 1;
One can assign to anything that represents a position in memory: a symbol, an array and a struc-
ture. There are a few more cases that an assignment can take place but that’s beyond the scope of
this manual.

3. Miscellaneous

No interpreted language is complete without a few more things. First comes on line help.
There are two ways to get information about the system. The one isapropos . If we want to find
all functions or variables that deal with images and templates we type interactively
??"[Ii]mage","[Tt]emplate";
and all the symbols that satisfy both regular expressions will show up along with one line of doc-
umentation.

The other is thedescribe function. It gives the full available documentation for this func-
tion or variable.
?gconvolve;
Both apropos anddescribe can be called as functions but the use of?? and? save us typ-
ing. We can find more information about the regular expressions in the Unix commandsed and
grep .

The comments in MediaMath are like C comments but are not allowed to span two lines. A
comment must end in the line it started.

4. Library functions

There are several libraries that are accessible through MediaMath. First all the functions in
the Unix math library are accessible with the same names. Then there is an extensive Lisp style
list processing library, a small string library and miscellaneous utilities and the most important
library, the image and matrix library.

4.1. Imageand matrix library

This library introduces a set of types to operate upon, that can represent images and matri-
ces. There18 such types but a bit of taxonomy makes them look fewer and easy to understand.

These types are of two kinds. One dimensional and two dimensional. The1-D ones are
vectorsvec , scan linesscln and 1-D templatestmpl . The 2-D ones are matricesmat , images
img and 2-D templatestmpl2 . So far six. Each one of them can be either floatf , integeri or

9

unsigned characteruc . The names of all of them are composed by the initials of the underlying
type and the short name of the type:
fvec fscln ftmpl fmat fimg ftmpl2
ivec iscln itmpl imat iimg itmpl2
ucvec ucscln uctmpl ucmat ucimg uctmpl2

4.2. Creating and destroying images and matrices

For every one of these types there is a routine to create an instance. We just prefix the name
of the type withmk_ as inmk_fvec . All of them accept the dimension (or dimensions) of the
object as argument(s) and an optional initialization.

The indices of matrix and vector objects of sizen range from1..n . The range can be spec-
ified using the range operator
mk_fvec(4);
mk_fvec(1..4,[1,2,3.3,4]);
mk_ucmat(2,3,[[1,2],[3,4],[5,6]]);
mk_ucmat(1..2,1..3,[[1,2],[3,4],[-5,-6]]);
mk_imat(1..2,4);
Notice that if we choose to write1..3 we do not give any more information. It is just different
style. It is an error to write2..4 for matrix creation.

Images and scan lines are pretty similar to matrices and vectors but start at0. All the fol-
lowing statements are valid:
mk_fimg(128,128);
mk_fimg(0..127,0..127);
mk_fimg(0..1,0..1,[[1,2],[1,2]]);
mk_ucscln(0..255);

Notice that the first two statements do exactly the same thing.

The range of templates can be anything, so they are not constrained to start from zero or
one. And we can use either a range or the bounds of the range like:
mk_ftmpl(-2,2);
mk_ftmpl(-2..2);
mk_ftmpl2(-1..1,-2..2);
mk_ftmpl(-3,3,[1,1,1,0,2,2,2]);

We should not be particularly concerned with deallocation of these data structures, although
they are big, because there is an efficient garbage collector to do that. The garbage collector
scans the memory every now and then and finds data that are inaccessible and deallocates them.
But if we feel the urge to deallocate something there is a set of routines to do that. All of them
arefree_ followed by the name of the data type likefree_fimg .

4.3. Accessingimages and matrices

We can access the elements in any of the above data structures using the same syntax as
with arrays.
a1[3];

10

a2[3,3];
wherea1 has one dimension anda2 has two. Nothing would be different ifa1 anda2 where
vector and matrix or scan line and image or one and two dimension template. The result will be
of the same type as the underlying type of the structure (float if it is a matrix of floats, integer if it
is a matrix of integers etc). Also we can write
a1[2..4];
a2[2..5,4];
a2[2,2..4];
a2[2..4,2..4];
to get part ofa1 or a2 . The type of the result of the above operations is of the same or the next
smaller type that would fit it. E.g. ifa1 and a2 where vector and matrix the first three lines
above would return a vector and the forth a matrix. If they were scan line and image the first
three should return scan line and the last an image.The bounds of the result might be shifted to
follow the conventions. Theabove expressions can appear to the left of the right of an assign-
ment statement. For more information look atgraref andgraset .

In many cases during a computation we might need the size of a matrix or a template. We
can use the-> operator to access them but not to modify the e.g.
a1->vmin;
a1->vmax;
a1->vsize;
a2->hmin;
a2->hmax;
a2->hsize;
a2->vmin;
a2->vmax;
a2->vsize;
The initial v indicates vertical dimension and the initialh indicates horizontal. A vector, a scan
line or a template are assumed, by convention to be vertical†.

4.4. Building images and matrices

We can concatenate two images or two matrices together to make a bigger matrix or image.
If the underlying types are different the one is upgraded to the other (an unsigned character to
integer and an integer to floating point). We can concatenate an image and a scan line or a scan
line and a number. The same goes for matrices vectors and numbers. The concatenation opera-
tions cannot be used for templates.
a1 = mk_fvec(1..2,[10,20]);
a2 = mk_fmat(1..2,1..2,[[1,2],[3,4]]);
a1<->a1; /* 2x2 matrix */
a1<|>a1; /* 2x2 matrix */
a1<->a2; /* 2x3 matrix */
a1<|>a2; /* 3x2 matrix */

† Since the vertical index is written first the(x,y) point of an imageim is im[y,x] .

11

a2<|>a2; /* 4x2 matrix */
a2<->a2; /* 2x4 matrix */
a1<|>3; /* 3x1 vector */
We would get similar results if we had scan lines and images instead of vectors and matrices.

4.5. Convolutions

There are three convolution operators. The general convolution operator(*) which applies
to images and templates (you cannot convolve two images though) when there is no ambiguity of
the orientation of these data structures. The horizontal(-) that means that the template is hori-
zontal and the vertical(|) that means that the template is vertical.
im1 = mk_fimg(4,4,[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1]]);
t1 = mk_ftmpl2(-1,1,-1,1,[[0,1,0],[1,0,-1],[0,-1,0]]);
im1(*)t1;
t1(*)t1;
t4 = mk_ftmpl(0..2,[-1,0,1]);
t1(-)t4;
t1(|)t4;
im1(-)t4;
im1(|)t4;
t4(-)t4;
t4(|)t4;

There is one more convention regarding convolutions. The templates are considered zero outside
their bounds (this does not affect array access, if we request the value of a template outside its
bounds we get anArrayOutOfBounds error signal). The images are periodic so the whole
plane is tiled with the same image. So when we convolve an image (or a scan line) with a tem-
plate the size of the resulting image is the same as the original. When we convolve two templates
the resulting template is bigger that the originals.

4.6. Arithmetic operations

Most of the operations that apply to numbers apply to images, matrices and templates as
well. The above convention (that templates are considered zero outside their bounds and images
are periodic) applies here also. These operations on matrices and vectors are the linear algebra
operations. Dot product is done using transposition.
v1 ˆT * v2;

These operations work between images, matrices etc and numbers the way one would expect. All
operations are done in floating point (it is faster on most modern machines).

There is an important difference between arithmetic with images and numbers. The opera-
tions
a = b;
a += 2;
have different effects whenb is a number or an image. If it is a number the operationa += 2;
creates a new object to store the number. If it is an image then it modifies the object that contains
the image by adding 2 to every element. This is a mechanism to avoid allocating new images or

12

matrices under the programmers control. It can be a way to optimize the code for speed or a way
to introduce bugs.

5. Math library

The whole math library can be accessed through MediaMath using the same names. There
is some minor loss of accuracy because MediaMath uses single floating point arithmetic. All of
them have a short line of documentation.For more information look at the Unix man pages. The
functions are:

Tr igonometric
acos asin atan
atan2 cos hypot
sin tan

Exponential
acosh asinh atanh
cosh exp exp10
exp2 expm1 log
log10 log1p log2
sinh tanh

Bessel
j0 j1 jn
y0 y1 yn

Miscellaneous
cbrt erf erfc
fabs remainder sqrt

Limits
finite infinity isinf
isnan isnormal issubnormal
iszero max_normal max_subnormal
min_normal min_subnormal signbit

6. List processing library

The internal representation of MediaMath is influenced by Lisp. As a result it comes with
an extensive list processing library. This library is usefull for implementing serious extensions to
the system, but the typical user does not need to be aware of its existence, save a couple of func-
tions to handle&rest arguments.
append assoc assq
atom boundp car
cdr compose_symbol compose_symbol_soft
cons consp copy
copy_alist delq eq

13

fboundp fmakunbound fset
get getenv getenvlist
intern intern_soft length
list listp make_array
make_list make_string make_symbol
makunbound memq nconc
nlistp not nreverse
nth nthcdr null
put range_car range_cdr
range_cons rassoc rassq
reverse rplaca rplacd
set setplist setq
symbol_function symbol_name symbol_plist
symbol_value symbolp time

For each one of them there is on line documentation, examples etc. It is a fairly complete list pro-
cessing system, that could support symbolic computation etc.

14

MediaMath
An Interacti ve System for
Image and Audio Analysis

Run time linking of C modules.

15

Part 2.

Run time linking of C modules

1. Overview of the C modules

The MediaMath system provides a simple mechanism to extend its functionality by adding
functions written in C. The mechanism is fundamental to the system and not an extra feature. It
is used by the developers to write everything except the central part of the interpreter. As such it
is extensively debugged and tested during the development. It does not incur any speed penalty
and it is intended to be simple and flexible, and easy to master for somebody familiar with the
UNIXTM system.

Modules written in C can be linked and unlinked to the executable at run time by a simple
command, e.g. if the module is named “hough.so” you can load it with the command†

dlopen("hough.so");
If for some reason you want to unlink “hough.so” then
dlclose("hough.so");
is enough. You rarely need this however. If while using “hough.so” you discover a bug you can
go back to the C code of “hough.so” correct the bug and link it again in the same manner. The
old version is automaticly unlinked and you will notice no side effect. This comes in handy when
you discover a bug and you already have a couple of hours useful work in the memory.

The C routines have to be written in a certain style in order to be linked. The interpreter has
to be informed of the name of the function the number of arguments, the type of function (for
most of the things you would like to do the type “function” is enough; the others are macro and
special form, people familiar with Lisp should recognize them).Then the documentation has to
be provided. All this seems quite an overhead for the programmer, but two mechanisms are pro-
vided to make this task trivial. First there is an emacs function to insert a header template for all
this information. The user has just to fill it up.* The rest are done automaticly by the second
mechanism that uses the awk language: The C source file is scanned by an awk program that
extracts this information from the headers and writes the appropriate code to inform the inter-
preter. Again, this mechanism is very well tested because this is how all the functions of the sys-
tem are written. As a result a substantial part of the code and the declarations are produced by the
awk program.

All the arguments to your C functions that are going to be called by the interpreter are of
type L_Ptr which stands for “lisp pointer”. This is a pointer to a union that can accommodate

† Users familiar with SunOs will realize that the name is borrowed from there. The actual functiondlopen_lisp that is called in re-
sponse does little more than set up the arguments for calling SunOsdlopen when working on a Sun

*A programmer that always puts headers at the beginning of his functions should not have any problem with that (assuming such a pro-
grammer exists)

16

all the types used by the system including the ones you are going to define in your modules. It is
the responsibility of the programmer to check if the types wrapped in the union are acceptable. A
wide variety of cpp macros are provided to make this easy. If the types of the arguments are
deemed acceptable then you can use them directly if they are lisp types (like cons cells, lisp
arrays, nil etc). Otherwise they are C types and you have to extract them. Another set of cpp
macros is provided for this purpose.

The last issue is the garbage collector. Luckily for the most part you should not worry about
it. The garbage collector is called only from within theeval function and in general only
advanced system utilities normally calleval . But in case you don’t hav ea choice you can use
one of two mechanisms: Either suspend garbage collection for the duration of this call toeval ,
a simple but wasteful technique, or protect the arguments and variables of your function. The
reason you have to do one of these is that the garbage collector will mess up anything that he
thinks is inaccessible and thus useless. So your function has to notify the garbage collector that
its local variables are accessible.

When you start a new module you have to first copy into a fresh directory the contents of
the ModulePrototype that contains a simple example. You can add and remove files with C code
or declarations (*.c and *.h) to write your own module. You have to edit the makefile to let the
make utility know your SRC files and your local headers. Then you type
make setup
and you are ready to start. Put your C declarations in a .h file and your C code in a .c file. The
first thing you write is routines to generate and destroy instances of the data types you declare.
Before every function that can be called by the interpreter include a header. Every function first
checks the type of its arguments and extracts the corresponding C values from them. Then most
of them should call a function to do the actual work and use the result to construct a Lisp data
type to be returned. After you have written enough routines that can be tested together type
make -k
to compile and link with the dynamic loader. You have a module ready to be linked to an already
running MediaMath. Type
dlopen("hough.so");
at the MediaMath prompt and you are ready to call your routines in exactly the same fashion as
any routine in the system.

2. Writing a simple function

Let’s write a very simple function that accepts one argument, a Float and returns the sine of
it using the standard math librarysin . This does not need any new C types other than Float so
we don’t need a .h file. Notice that the type Float is capitalized, which means that is not the
same asfloat . It is a compile time option to specify Float as either float of double.

The first thing to do is to create a header. If you are using emacs and have loaded the appro-
priate emacs lisp files just typemeta-h . A ten line header will be inserted and you have to fill it
out.
/*awkstart**
Name: mysin
MinArgs: 1

17

MaxArgs: 1
Type: function
Synopsis: mysin(<float>)
Doc: This function computes the sine of <float>.
Doc: It is just an example of how to write simple functions.
Example: mysin(3.14/2);
**awkstop*/

L_Ptr mysin(Lnum)
L_Ptr Lnum;

{
Float f,res;
if (!FLOATP(Lnum))

error_signal(Smysin,SWrongTypeArg,Sfloatp,Lnum);
f = X FLOAT(Lnum);
res = sin(f);
return C_2_L_float(res);

}
This is how your function will look like. If you use one of the files provided you can just copy
your function in and compile by typingmeta-x compile . You can load your function in a
running MediaMath by typingdlopen("example.so") . Try it.

Lets look at these fields one by one. First the name field provides no surprise (so far). The
minargs and maxargs fields are what one would expect too. The type of the function is “function”
which means that the arguments to your function are evaluated. In other words if you have the
sequence
a = 1.0;
b = mysin(a);
then your function will see theFloat 1.0 whereas if it wasspecialfrm (special form) then
your function would see the symbola which is not convenient here.

The next field is synopsis. It just gives a synopsis of the syntax of the function. It is up to
the programmer to choose if he wants to write<float> or <number> . The next field is doc.
This can be several lines long but each line has to start with a “Doc: ”. The first line of these is
kept as a string in the main memory so that the apropos command can read it to try to match
strings. So better have a good summary of the description as a first line. All the lines go to a file
“mysin.doc” to be read by the help command.Finally the example field records a few simple
examples to be used by the help command.

The header seems pretty straightforward so far. It does not get that much more complicated.
The body of the function is also simple.

Both the arguments and the return value are pointers to this catchall union. The first thing to do is
to check if the argument is indeed aFloat . This is done with the cpp macro FLOATP(). If you
are using emacs you can typemeta-x c-macro-expand to see what it is doing. Just checks
a number stored in the first word of the data structure. If the test is negative then the
error_signal function is called to signal the error, print a message and return to the read

18

eval loop. The message contains what is in the arguments of theerror_signal call. Lets have
a look into each one of them. The first argument isSmysin . This is the symbol whose value is
the actual function. You don’t hav eto declare and initialize it. This is done by the awk program†.
Every function that can be invoked by the interpreter, has a symbol which has the same name
(there are two exceptions to this) and there is always a variable that points to it. The name of the
variable is the same as the name of the function with anS attached before it.

The next field isSWrongTypeArg . This is the error message. Notice the funny capitaliza-
tion. Words that don’t hav eto be typed in often use it. Error messages are among them. Again we
provide the symbolSWrongTypeArg . The user can retrieve the documentation of this symbol
to get more information on this type of error.

The next field is the comment field. We gav eSfloatp to give a hint that floatp would fail
for this type of argument. The programmer should give whatever might help the user find what
kind of error happened. The last argument is the value that did the damage.

If the test is positive then the execution goes on. At this pont we know that the argument is a
Float . We can extract it using theXFLOATmacro. This returns theFloat stored in the third
word of the data structure and you can see it by expanding the macro with emacs.

We hav ethe actual value of theFloat now, so we call sin which returns anotherFloat
(well actually double) which we pass as argument to the functionC_2_L_float (which stands
for C to LispFloat). This function creates a data structure to hold theFloat that has all the
correct tags etc. This is whatmysin returns.

2.1. Improving our first module

If you were to add this module to the system, you would surprise the user. First the function
sin is calledmysin . Second even in a staticly typed language like ANSI C, one can give an
integer as an argument to a function that needs aFloat . Lets see how we can fix it.

We can try to change the name of the function tosin from mysin . That would be an invi-
tation for trouble becausesin is the name of the math library function. We already saw how this
problem was solved. If you notice the example about dynamic linking above, the name of the
function dlopen is known inside the C code by the namedlopen_lisp . Our function is
mysin both inside the interpreter and inside the C program.

The whole job is done by the awk programs. When a function is declared by a name that
ends with_lisp like dlopen_lisp the awk programs keep two versions of the name: one
with and one without_lisp in the end. The one without is what appears in the run time hash
table of the system and the one with_lisp is what the C compiler and the linker see. So they
are not confused by the names.

The other problem can also be easily solved. One can replace the check
if (!FLOATP(Lnum))

† a symbol is a collection of three things: the name which is a string, the value which can be anything or undefined and the property list
where any combination of key value pairs can be stored. The property list is used mainly by the system to store important information and if you
don’t know what your are doing leave it alone. A symbol can be interned in a hash table, in which case it can be retrieved by its name.

19

error_signal(Smysin,SWrongTypeArg,Sfloatp,Lnum);
with

Lnum = to_float(Lnum);
Functionto_float returns aFloat if Lnum is convertible toFloat , or signals an error oth-
erwise. After the call toto_float we know that Lnum is a Float . The rest of the program
proceeds in the same way. We solved a problem but we created another one. If the user provides
sin with an invalid type, the error will be issued byto_float and there is no simple way to
trace the origin of the error. If this is a concern then the best thing to do is an error checking
inside sin . You can use thenumberp function for that. numberp returns symbolt if the
argument is a number andnil otherwise. The program then would look like
/*awkstart**
Name: sin_lisp
Minargs: 1
Maxargs: 1
Type: function
Synopsis: sin(<number>)
Doc: This function computes the sine of <number>.
Doc: It is just an example of how to write simple functions.
Example: sin(3);
**awkstop*/

L_Ptr sin_lisp(Lnum)
L_Ptr Lnum;

{
Float f,res;
if (NULLP(numberp(Lnum)))

error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
res = sin(f);
return C_2_L_float(res);

}
Notice the use of the macroNULLPthat checks if the function returnsNIL . You could write
NIL == numberp(Lnum)
or
St != numberP(Lnum);
whereSt andNIL are thet andnil in the C environment.

At this point we know enough to write any simple function. With the help of the Reference
Manual we can write any function that does not need new types, variable arguments, garbage col-
lector protection or list processing.

3. Variable Arguments

First, we have to inform the system that we use variable arguments by declaring different
minimum and maximum number of them. If the maximum number of arguments is infinite use

20

-1 .

The awk program is going to do all the work to notify the interpreter about the arguments of
this function. The interpreter will match one by one the minimum number of arguments and will
put the rest in a list and give it as the last argument. So your program has to accept the minimum
plus one number of arguments.

Let’s write a function that computes the sine of a number, that accepts an optional argu-
ment, that when nonnil instead of the sine computes the hyperbolic sine. The code should look
like this
/*awkstart**
Name: sin_lisp
Minargs: 1
Maxargs: 2
Type: function
Synopsis: sin(<number>[,<hyper>])
Doc: Computes the sine of <number>. With optional non nil
Doc: argument computes the hyperbolic sine. It is just
Doc: an example of how to write simple functions with
Doc: variable args
Example: sin(3,t);
**awkstop*/

L_Ptr sin_lisp(Lnum,rest)
L_Ptr Lnum, rest;

{
Float f,res;
if (NULLP(numberp(Lnum)))

error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
if (!NULLP(rest))

{
if (!NULLP(cdr(rest)))

error_signal(Ssin_lisp,STooManyArgs,NIL,rest);
if (!NULLP(car(rest))) return C_2_L_float(sinh(f));

}
return C_2_L_float(sin(f));

}
The code is easy to follow. If no second argument is supplied then rest isnil . If a second argu-
ment is supplied it is a list that can be accessed withcar andcdr . For those not familiar with
Lisp, car returns the first element of a list andcdr the rest of the list. The statementif
(!NULLP(cdr(rest))) checks if more than 2 arguments are supplied, in which case an

21

error is signaled. The interpreter does not check for that.∋

3.1. Addinga few more features

This function does a pretty good job, but let’s make it a bit fancier. If a second argument is
supplied it should be eitherhyperbolic or periodic . This way the user is forced to include
these words in his function call making the code more readable; you don’t need to look up the
manual to find out what’s going on, it is there.

First of all we have to let the interpreter know about the symbolshyperbolic and
periodic . This would be automatic inside a running MediaMath system, because the symbols
are interned immediately as they are encountered. But inside the C code you have to intern it
yourself and keep a global variable around to access it. It would be a lot of trouble to do it manu-
ally but the awk program does it for you. The mechanism is very similar to the headers for func-
tions. It would look like this
/*awkvarstart**
Name: hyperbolic
Doc: Flag symbol. If present as the second arg of a trig
Doc: function, it returns the hyperbolic counterpart
Value:
**awkvarstop*/

/*awkvarstart**
Name: periodic
Doc: Flag symbol. The opposite of the hyperbolic flag.
Value:
**awkvarstop*/
If you are using emacs you typemeta-p and an empty will appear. A global variable is
declared for each header:Shyperbolic andSperiodic . You may notice the same conven-
tion. The leadingS means symbol. If the value field is present, a global variable with the same
value is declared that points to this value. We’ll see its most common use when we talk about
types. Here we do not use the value field.

The doc entry does exactly the same job as in function headers. If we use the same sym-
bols anywhere in the module then we don’t redefine them. If some other module has declared
them too, then the last doc string and the last value are kept and nothing else changes. If you
want to avoid that then you have to use the import mechanism.

Now that we have seen how to introduce new symbols we are ready to proceed with the
code.
/*awkstart**
Name: sin_lisp
Minargs: 1
Maxargs: 2
Type: function

∋ You might notice that the actual value ofMaxArgs , is irrelevant. It only matters if it is equal or not toMinArgs .

22

Synopsis: sin(<number>[,{hyperbolic, periodic}])
Doc: Computes the sine of <number>. If the optional argument
Doc: is hyperbolic then the hyperbolic sine is returned. If
Doc: it is missing or it is periodic the periodic sine is
Doc: returned. It is just an example of how to write simple
Doc: functions with variable args that use new symbols.
Example: sin(3,’hyperbolic);
**awkstop*/

L_Ptr sin_lisp(Lnum,rest)
L_Ptr Lnum, rest;

{
Float f,res;
if (NULLP(numberp(Lnum)))

error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
if (!NULLP(rest))

{
L_Ptr temp;

if (!NULLP(cdr(rest)))
error_signal(Ssin_lisp,STooManyArgs,NIL,rest);

temp = car(rest);
if (temp == Shyperbolic) return C_2_L_float(sinh(f));
if (temp != Speriodic)

error_signal(Ssin_lisp,SUnexpectedArg,NIL,rest);
}

return C_2_L_float(sin(f));
}
Again Shyperbolic andSperiodic are the symbols that inside a running MediaMath are
hyperbolic and periodic . Also notice in the example above that we have to quote
hyperbolic to avoid evaluation. If we leave it unquoted then we will trigger an error.

4. Types

Before we explain how to introduce new types we have to describe the type system. In this
section we talk about how to introduce types and operations that handle conventional C struc-
tures, how to make the garbage collector dispose them and the printing routines display them.

4.1. Classification

All the types used in the MediaMath belong in one of two categories: Lisp types and C
types. The Lisp types are further classified as evaled and unevaled, e.g. ones that theeval func-
tion of the interpreter evaluates and returns the result or does not evaluate and returns them as
they are.

23

The lisp types that can be evaluated are among others the symbol (the value field of the
symbol is returned) and the function call which is a list of a function and its arguments (the result
of the function call is returned.). The evaluation procedure is complicated and it is described
elsewhere.

The types that are not evaluated are almost all the rest: an array, a structure, nil etc. In other
words these types represent themselves. All the C types are also unevaled.

C types are also classified in two categories. “Small” and “large”. “Small” are all the prede-
fined ones and “large” are all the ones defined by the user. The name comes from the fact that
most of the predefined ones are “small” (chars, integers,Float s, etc) whereas most of the user
defined ones are “large” (images, matrices, etc). (See fig. 1)

4.2. Runtime representation

Every lisp object is an array of words. Every word is the same size as the pointer on the par-
ticular machine. The first word of the array is the header which contains the markbit (for the
mark and sweep garbage collector), the type tag which is a number that represents the type and
one more integers for the extension. Theextension represents different kinds of information
depending on the type. For all lisp types contains the size of the array even if the size is implicit
in the type (like cons cell which has size 2). For C types the use of this integer varies. Some of
the predefined C types do not use it. Others like the ones that represent C functions use it to store
the minimum number of arguments. Theuser defined types use the extension to store the actual
number that represents the type (the type tag contains only the number that corresponds to

All types

Lisp types C types

Evaled Unevaled Predefined User defined

Nulltype
Regulartype
Specialtype
Selecttype
Defaulttype

Cons
Symbol
Keytype

Unint
Int
Float
Unchar
Char
Strng
Function
Vfunction
Specialfr
Vspecialfrm
Macro
Vmacro
(Large)

In_stream
Out_stream
Dl_handle
Fimg
Ucimg
Fmat
Fvec
etc...

Fig. 1. All the types in the MediaMath system.

24

“large”, a kind of escape tag).

The “large” type tag does not correspond to any real type. It is just an extension tag to take
care of the user defined types. In other words the functiontype_of will never return large •

All the user defined types are allocated numbers that are then stored in the extension in the
header. The allocation is done by the system (functioncreate_C_type takes care of this) and
may vary from execution to execution. (See fig. 2)

4.3. Keeping track of the types

The functiontype_of will return a symbol which is the name of the type. It is the symbol
int for integer, the symbolfloat for a floating number, the symbolfimg for a floating point
image etc. This we call type name. The value of the type name is initially undefined (and the user
can define it without any interference with the type system).

The next symbol involved in the types is theTypenum symbol. This is symbolintType-
num for integer, symbol floatTypenum for a floating number, symbol fimgTypenum for a
floating point image etc. The rule to generate theTypenum symbol from the name is obvious.
The value of theTypenum symbol is theTypenum, an integer unique to this type, at least dur-
ing a session. TheTypenum of a predefined type is stored in the type field of every instance of
the type. TheTypenum of the user defined C types is stored in the extension of the header. This
symbol contains most of the information needed for typechecking etc and its name makes it hard
for the user to use it accidentally as a variable.

The property lists of these symbols contain most of the useful information. The property list
of the name symbol has the propertyTypenum which is the correspondingTypenum symbol.

sym4

name

value

prop. list

next

Symbol

Integer

int

Unused

integ..xxxx

stringxxxx

String

*char

Unused

Vfunction (n args)

(L_Ptr(*)())

n vfun.

Unused

String

*void

Unused

largetypenum

Cons cell

car

cdr

2 cons

Fig. 2. Internal representation of var ious types.

• The same is true for thespecial type. It is an escape for all the user defined lisp structures. Again the functiontype_of will never re-
turnspecial .

25

This gives a faster way to get theTypenum symbol than constructing the symbol from its string
and intern ing it. It also holds the first line of the documentation in theDoc property. The
Typenum symbol contains a bit more information. First theDoc property contains the same
documentation line. Then theNameproperty contains the name symbol. TheDestroy prop-
erty, present in user defined C types, contains the function that can be called by the garbage col-
lector to deallocate the type (free the space for an image, close a file etc). It can also contain the
Printer property to print an instance of the type (present in some C types).

Given the name or theTypenum symbol of a type you can find all the information avail-
able to the system. But given the Typenum integer, you cannot do it easily. For this purpose
there is thetype_array which maps these integers to the corresponding symbols.

4.4. Defininga new C type

After this brief exposition of the type system it is clear that it is not easy to deal all the
details. For this reason there are tools to isolate the user from it. Defining a new type is as easy as
defining theTypenum and at least one function to deallocate it (if deallocation does not make
sense, still this function has to be defined to do nothing and just returnNIL). Again the awk pro-
gram does most of the work with the help of a couple of functions, macros and simple conven-
tions.

4.4.1. Example:define floating image types

We can have a look into a real type now. It is not worth to find a toy example to do the intro-
duction because it is really simple by itself. The code comes from theImageBasics module
and not the core interpreter, but it would be exactly the same if it was from the interpreter.

As most modulesImageBasics defines two lev els of functions, one and two. The first
level functions do the actual work and do not deal with headers, data types, error checking etc.
They accept arguments that had their headers removed (e.g. aFloat is a Float and not an
L_Ptr whose tag isFLOAT). They are not called directly from the interpreter and they do not
call any high level function including error handler. In general every effort has to be taken so that
these functions can be used with as little modification as possible in other packages as library
functions. And of course the opposite: any public domain function should easily fit among the
level one functions. The level two functions do all the error checking, type casting etc and then
call one or more level one functions. It is then obvious that level two functions require some
familiarity with MediaMath whereas level one are conventional functions. So we present only
level two code.

All the level two code we need in order to define a floating point image type is listed below.
We might need to do a bit more than that, to have a complete abstract data type, like write func-
tions to access or modify a pixel, add two images, display an image etc.

/*awkstart**
Name: mksimple_fimg
MinArgs: 2
MaxArgs: 2
Type: function

26

Synopsis: mksimple_fimg(<vdim>,<hdim>)
Doc: Allocates an image with <vdim> rows and <hdim> columns.
SEE: free_fimg, mksimple_fimg
Example:
**awkstop*/

L_Ptr mksimple_fimg(vdim,hdim)
L_Ptr vdim, hdim;

{
int Cvdim, Chdim;
ftwo_Dptr fimg;
L_Ptr res;

TO_INT(vdim,Cvdim,Smksimple_fimg);
TO_INT(hdim,Chdim,Smksimple_fimg);

if ((Cvdim <= 0)||(Chdim <= 0))
error_signal(Smksimple_fimg,SNonPosSize,NIL,LIST2(vdim,hdim));

fimg = mk_ftwo_D(0,Cvdim-1,0,Chdim-1);

res = C_2_L_large((void*)fimg,XtypenumDefinition(SfimgTypenum));
return res;

}

The function above allocates an instance of a floating pont imagefimg . It accepts as arguments
the dimensions of the image. It first extracts the integer values of the dimensions (cpp macro
TO_INT does the extraction and typechecking in a smart way). Some additional error checking
follows. Then space for the image is allocated by functionmk_ftwo_D , which allocates space
for two dimensional objects like images and matrices. This function returns a pointer to a newly
allocated C structure. Then functionmksimple_fimg returns this pointer encased in a struc-
ture that has a header. The encasing is done byC_2_L_large that accepts two arguments: the
pointer to the image structure and theTypenum as a plain integer. XtypenumDefinition(Sfimg-
Typenum) can help locate it.

/*awkstart**
Name: free_fimg
MinArgs: 1
MaxArgs: 1
Type: function
Synopsis: (free_fimg <fimg>)
Doc: Frees the space allocated to <fimg>. It is called
Doc: automatically by GC when <fimg> is no longer accessible.
SEE: mk_fimg

27

Example: free_fimg(mk_fimg(100,100));
**awkstop*/

L_Ptr free_fimg(fimg)
L_Ptr fimg;

{
if (!CHK_TYPE(Sfimg,fimg))

error_signal(Sfree_fimg,SWrongTypeArg,NIL,fimg);

if (NULLP((L_Ptr)XLARGE(fimg))) return NIL;
free_ftwo_D(XLARGE(fimg));

XLARGE(fimg) = (void*)NIL;
return NIL;

}

The only function we need to define to have a descent data type isfree_fimg . This function
has to be defined, otherwise the Garbage Collector will not know what to do with anfimg if it
sees one that is inaccessible.That’s a simple routine that first checks the type of the argument,
then makes sure that the data structure is not freed already (the convention is that the pointer to
the data structure inside the header is replaced with aNIL if the image is already freed). Then
frees the data structure and sets the no longer valid pointer in the header toNIL to obey the con-
vention.

/*awkstart**
Name: print_fimg
MinArgs: 1
MaxArgs: 1
Type: function
Synopsis: print_fimg(<fimg>)
Doc: Prints <fimg>. Normaly it is invoked by the
Doc: read-eval-print loop.
SEE: prin
Example: print_fimg(a[1..10,5..10]);
**awkstop*/

L_Ptr print_fimg(fimg)
L_Ptr fimg;

{
if (!CHK_LIVETYPE(Sfimg,fimg))

error_signal(Sprint_fimg,SWrongTypeArg,NIL,NIL);

print_ftwo_D((ftwo_Dptr)XLARGE(fimg));
return fimg;

28

}

The functionprint_fimg is optional. If we do not define it the functionprin that is called to
print the result of an operation is going to print something by default which might not always be
useful. Ifwe define it then functionprin is going to look for it and use it.

The function by itself is very simple: MacroCHK_LIVETYPEtells if the type is correct and not
already freed (the user can free an instance of a type since thefree_fimg is available to him)
and then calls a function that does the printing. As all functions related toprin , it has to return
its argument.

/*awkvarstart**
Name: fimgTypenum
Doc: Type symbol. The type of an image of floats.
Value: create_C_type(SfimgTypenum,"print_fimg","free_fimg");
**awkvarstop*/

And in order to inform the world that a new data structure was born we use the good old awk
headers. The conventions are simple. The name has the suffix Typenum. The Doc line contains
the stringType symbol to make it easy to search with apropos. The Value part is just a call to
create_C_type , with the symbol of the type a first argument, an optional name (C string) of
the function that can print the data type as a second argument and the name of the function that
frees it as the third. The routinecreate_C_type() does all the work (which would be pretty
complicated otherwise) like putting the appropriate things in the hash table, initializing the prop-
erty lists of the appropriate symbols and allocating new integer to represent the newTypenum.

5. Linking

Most of the details of linking are taken care of by thedlopen . There is one more though
that dlopen cannot do. When we calldlopen the following things happen. The dynamic
linker is called and all the variables in the module that are undefined are linked to the core inter-
preter. Then the functioninit that should be present in every module is called and inserts in the
hash table of the interpreter the names of the functions that are available in the module. What is
still needed is to link the function symbols in the new module to functions in other modules
which should be already loaded. In other words take care of the interdependence of the modules.
This is a difficult job to do for every module so there is a simple tool for that: yet another header!
If you use emacs then the sequencemeta-m will create an empty header for you to fill.As an
example let’s see how other modules would use the moduleImageBasics .
/*awkimportstart***
Module: image.so
Symbol: CannotReadImg
Symbol: CannotWriteImg
Symbol: IncopatibleSizes
Symbol: NonConfRange
Symbol: NonPosSize

29

Symbol: fimgTypenum
Symbol: fmatTypenum
Symbol: fsclnTypenum
etc...
Function: free_fimg
Function: free_fmat
Function: free_fscln
Function: free_ftmpl
Function: free_ftmpl2
Function: free_fvec
etc..
***awkimportstop*/

The first line is the module that these functions or symbols come from.The name is the name of
the shared object that contains the module. If it is not already there it is linked. Therest are the
names of the symbols and functions that the new module needs to get from the ImageBasics.
These functions can be used then anywhere in the new module and have to be defined only once.
All the details like C declarations etc are taken care of.

30

MediaMath
An Interacti ve System for
Image and Audio Analysis

C modules: Reference manual

31

Part 3.

C modules: Reference manual

1. General

The MediaMath interpreter is structured like a Lisp interpreter. Every data structure has a
header of typeunion L_Header . Any argument to any function and any value any function
returns is a pointer toL_Header which istypedef ed toL_Ptr . Any function is thus defined
to return L_Ptr and all the arguments to functions are of typeL_Ptr . Any object that is
defined asL_Ptr we call tagged object and it is actually just a pointer.

All the typechecking is done as a result in run time. Facilities are provided to check the type
of an object, extract the actual value of an object and to create an object with a header out of a
conventional C type.

2. Lisp types

There are two major kinds of types. The lisp types and the C types. The lisp types contain
only other tagged objects. TheCONStype for instance contains a pointer to the first element of a
list and the rest of the list. For all these types we provide macros and functions for typechecking,
accessing (and modifying) and creation.

A l isp type can be thought of as an array of tagged
objects. Thelength of this array can be extracted with the
macro XREGLEN(t_obj) where t_obj is any lisp
object.

int XREGLEN(t_obj)
L_Ptr t_obj;

The Lisp types are:

SPECIALTYPE REGULARTYPE CONS
SYMBOL NULLTYPE SELECTTYPE
DEFAULTTYPE KEYTYPE RANGETYPE

All the above types are intended for advanced MediaMath programming and can be ignored by
the casual module writter. The recommended method of manipulating these structures is with the
high level routines that are provided, which are also documented and accessible within the
MediaMath interpreter.

SPECIALTYPE

Description:
The type ofstruct . Should not be normally used by C functions.

Typechecking:

32

SPECIALP(t_obj,sz) : cpp macro that returns 1 if
t _obj isSPECIALTYPEand has lengthsz , 0 other-
wise. Ifsz is zero does not check for size.

int SPECIALP(t_obj,sz)
L_Ptr t_obj;
int sz;

Access:
XPTR(t_obj+n) : cpp macro that returns thenth

field of t_obj . The fields are numbered starting from
2. It is better to usesref to do the same thing. The
typenum of thet_obj is XPTR(t_obj+1) . When
the macro appears on the left side of an assignment
statement it will modify the contents oft_obj . Again
it is better to usesset .

L_Ptr XPTR(t_obj+n)
L_Ptr t_obj;
int n;

L_Ptr sref(curr_tnum,strct,indx)
L_Ptr curr_tnum, strct, indx;

L_Ptr sset(curr_tnum,strct,indx,obj)
L_Ptr curr_tnum, strct, indx, obj;

Creation:
mk_typenum_struct(num,sz) : It creates a
structure withtypenum num and sizesz .

L_Ptr mk_typenum_struct(num,sz)
L_Ptr num, sz;

REGULARTYPE

Description:
The type of an array of lisp pointers. Every pointer can point to a different kind of element.
It can be used to hold a sequence of images or a set of templates, etc.

Typechecking:
REGULARP(t_obj,sz) : cpp macro that returns 1 if
t_obj is REGULARTYPEand has lengthsz , 0 other-
wise. Ifsz is zero does not check for size.

int REGULARP(t_obj,sz)
L_Ptr t_obj;
int sz;

Access:
XPTR(t_obj+n) : cpp macro that returns thenth ele-
ment of t_obj . The elements are numbered starting
from 1. It is better tousearef to do the same thing.
When the macro appears on the left side of an assign-
ment statement it will modify the contents oft_obj .
It is better to useaset .

L_Ptr XPTR(t_obj+n)
L_Ptr t_obj;
int n;

aset(array, intgr, elm) : Set the intgr th
element of lisparray to elm and returnelm .

L_Ptr aset(arr,indx,elm)
L_Ptr arr, indx, elm;

aref(arr,indx) : Access theindx element of
arr

L_Ptr aref(arr,indx)
L_Ptr arr, indx;

Creation:

33

make_array(len,elm) : Returns a new array
1..len ev ery element of which containselm .

L_Ptr make_array(len,elm)
L_Ptr len, elm;

CONS

Description:
The type of a list. The name comes from lisp. Lists are overloaded with uses. The carry the
multiple arguments for arguments declared&rest , they are the internal representation for
MediaMath programs (in a Lisp style), as well as ordinary lists for general programming.
There is an extensive list processing library to manipulate them.

Typechecking:
CONSP(t_obj) returns non-zero ift_obj is a
cons cell zero otherwise. WhileNIL is the empty list
CONSP(NIL) will return zero for that.

int CONSP(t_obj)
L_Ptr t_obj;

Access:
XPTR(t_obj+1) returns thecar of the list (eg. the
first element)
XPTR(t_obj+2) returns thecdr of the list (eg. the
rest of the list). Both of the can appear in the left side
of an assignment statement to set thecar and the
cdr of acons cell.
The recommended way to access them is using
car(l) and cdr(l) and to modify them
rplaca(l,elm) andrplacd(l,tl) .

L_Ptr XPTR(t_obj+n)
L_Ptr t_obj;
int n;

car(cell) and cdr(cell) : Return the first and
second element of conscell . If cell is viewed as a
list the meaning is that they return the first element
and the rest of the list.

L_Ptr cdr(cell)
L_Ptr cell;

L_Ptr car(cell)
L_Ptr cell;

rplaca(l,elm) and rplacd(l,tl) :
rplaca(l,elm) replaces the car of listwith elm .
rplacd(l,tl) replaces the cdr of list withtl .

L_Ptr rplaca(lst,newel)
L_Ptr lst,newel;

L_Ptr rplacd(lst,newel)
L_Ptr lst,newel;

Creation:
cons(a,b) creates acons cell with a andb as ele-
ments.

L_Ptr cons(a,b)
L_Ptr a, b;

34

LIST2(el1,el2)..LIST6(el1..el6) : A sim-
ple and convenient way to create lists up to length 6.

L_Ptr LIST2(el1,el2)
L_Ptr el1, el2;

SYMBOL

Description:
The type of a symbol. Symbols serve as variables, place holders, function names etc. They
are structures that contain four fields: name, value, property list and next. They can be in a
hash table in which case they are called (intern ed and outside a hash table in which case
they are called unintern ed. The next field serves only for the external chaining of the
hash table and works better if left alone.

Typechecking:
SYMBOLP(t_obj) : returns non-zero ift_obj is a
symbol, zero otherwise. WhileNIL is considered a
symbolSYMBOLP(NIL) returns zero.

L_Ptr SYMBOLP(t_obj)
L_Ptr t_obj;

Access:
XPTR(t_obj+pos) : returns the name, value, prop-
erty list, or next whenpos is NAME_POSTN,
VALU_POSTN, PLIST_POSTN, NEXT_POSTN.
XPTR(t_obj+pos) can appear on the left side of
an assignment statement.

L_Ptr XPTR(t_obj+pos)
L_Ptr t_obj;
int pos;

Creation:
intern(str,NIL) : Returns an interned symbol
with namestr . The second argument has to beNIL
for future versions that will support multiple hash
tables. If the symbol does not already exist it is cre-
ated and the initial value for the value field isUNDEF
(undefined), for the property listNIL and the next
field is used by the hash table. If there is a symbol
with this name in the hash table it is simply returned.

L_Ptr intern(name,tbllst)
L_Ptr name, tbllst;

intern_soft(str,NIL) : Same as
intern(str,NIL) but if the symbol does not
exist, it is not created.

L_Ptr intern_soft(str,tbllst)
L_Ptr str, tbllst;

make_symbol(str) : Just creates a symbol with
the namestr without interning it. This means that if
we call this function twice with the same arguments
we get two different symbols, whereasintern will
return the same symbol. Also note that if we loose
track of an unintern ed symbol we cannot find it
again. This function is used only for advanced pro-
gramming using macros.

L_Ptr make_symbol(str)
L_Ptr str;

35

NULLTYPE

Description:
The type of NIL. Cannot be accessed, cannot be modified, it is created only once during the
initialization of a session. It should be seen as similar toNULLof standard C programming.

Typechecking:
NULLP(t_obj) : returns non-zero ift_obj is NIL ,
zero otherwise.

int NULLP(t_obj)
L_Ptr t_obj;

SELECTTYPE

Description:
The type of a selection. Selection is the object that represents a generic function. It is an
array that contains either selections or functions orNIL . For instance if the generic function
dispatches on the two first arguments then it is an array of selections which in turn are
arrays of functions. Every selection array can have a mix of selections, functions orNIL s,
to dispatch on one or more arguments. ANIL means that there is no function defined for
this combination of argument types if theDEFAULTTYPEentry is alsoNIL . If the
DEFAULTTYPEentry is notNIL then this is the function that corresponds to the combina-
tion of argument types.

Typechecking:
SELECTP(t_obj,sz) : Returns non-zero ift_obj
is a selection of sizesz . If sz is zero there is no size
checking.

int SELECTP(t_obj,sz)
L_Ptr t_obj;
int sz;

selectp(t_obj) : returns non-NIL if t_obj is a
selection. Thisis the recommended way to typecheck.

L_Ptr selectp(t_obj)
L_Ptr t_obj;

Access:
XPTR(t_obj+typenum) : Returns the selection for
type typenum . Typenum is an integer that repre-
sents the corresponding type. It cannot be eitherSPE-
CIALTYPE or LARGEsince both are not single types
but whole classes of types.

L_Ptr XPTR(t_obj+typenum)
L_Ptr t_obj;
int typenum;

get_selection(t_obj,lst) : lst is a list of
integers (i1, i2, ...) representingtypenums and
t_obj is a selection.Get_selection retrieves
the i1th element oft_obj , then the i2th element of
that and so on until either the list is over or a non
selection object is found which is returned. This is the
recommended way to retrieve a selection.

L_Ptr get_selection(t_obj,lst_n)
L_Ptr t_obj, lst_n;

Creation:

36

add_selection(smbl,lst) : this function is
called in response to ageneric definition. When
called from within the MediaMath it does not evaluate
its arguments, but if it is called from C behaves like an
ordinary function. It assigns the selection object to
smbl , but when smbl already contains a selection
then this is updated. Ifsmbl contains a function this
function becomes the default, so whatever used to
work before for this function continues to work.

L_Ptr add_selection(smbl,lst)
L_Ptr smbl, lst;

DEFAULT TYPE

Description:
There is no instance of this type. It merely exists so that selection functions fall back to this
when they find aNIL .

KEYTYPE

Description:
The type of the structure that represents key-value pairs. It appears in the argument list of
functions that contain keys e.g. write_eps_img(img1, "face.eps",
:dpi=2*res); . It is a structure that contains two fields: a symbol, in this casedpi , and
a value, in this case the structure that represents the piece of code2*res .

Typechecking:
KEYP(t_obj) : returns non-zero ift_obj is a key. int KEYP(t_obj)

L_Ptr t_obj;
Access:

XPTR(t_obj+pos) : returns the symbol or the
value of the key. Pos is eitherKEY_NAME_POSTN
or KEY_VALU_POSTN. It can appear on the left side
of an assignment statement.

L_Ptr XPTR(t_obj+pos)
L_Ptr t_obj;
int pos;

KEY_SYMBOL(t_obj) andKEY_VALUE(t_obj)
return the symbol and the value of the key t_obj .
They can appear on the left side of an assignment
statement.

L_Ptr KEY_SYMBOL(t_obj)
L_Ptr t_obj;

L_Ptr KEY_VALUE(t_obj)
L_Ptr t_obj;

Creation:
key_cons(smbl,t_obj) : returns a new cell with
smbl andt_obj as symbol and value.

L_Ptr key_cons(smbl,t_obj)
L_Ptr smbl, t_obj;

RANGETYPE

Description:
The type of the structure that represents a range. It appears in the argument list of functions,
or array dereferencing, that contain ranges e.g.mk_ftmpl(-2..2,
[-1,2,-3,2,-1]); . It is a structure that contains two numbers in this case-2 and2.

37

Typechecking:
RANGEP(t_obj) : returns non-zero ift_obj is a
range.

int RANGEP(t_obj)
L_Ptr t_obj;

Access:
XPTR(t_obj+pos) : returns the from and to part of
the range.Pos is either RANGE_INT1_POSTNor
RANGE_INT2_POSTN. It can appear on the left side
of an assignment statement.

L_Ptr XPTR(t_obj+pos)
L_Ptr t_obj;
int pos;

RANGE_INT1(t_obj) and
RANGE_INT2(t_obj) return the from and to num-
bers of the range. They can appear on the left side of
an assignment statement.

L_Ptr RANGE_INT1(t_obj)
L_Ptr t_obj;

L_Ptr RANGE_INT2(t_obj)
L_Ptr t_obj;

Creation:
range_cons(int1,int2) : returns a new cell
with int1 and int2 for from and to part of the
range.

L_Ptr range_cons(int1,int2)
L_Ptr int1, int2;

3. Cobjects

C objects contain a tag and a regular C type like integer, float, string (pointer toNULL ter-
minated string), image or file pointer. C objects are again of two main types: small and large.
Smaller or equal in size to a pointer is small and all else is large. Small ones are stored after the
header and large ones are stored somewhere else and the pointer to this else is stored after the
header. The large types are not defined in compilation type but in load time (e.g. when Media-
Math is started or when a new module is loaded) so new large types can be defined dynamically.
The extra C_info field has various uses: function types, macro types etc use it to store the min-
imum number of arguments. Large types use it to store the typenum, an index to an array of sym-
bols that have all the needed info in their property lists. Every type has such a typenum.

typedef union L_Header *L_Ptr;

typedef union L_Header
{
...

struct
{

unsigned int mrkbit:1; /* GC marker bit */
unsigned int usrmrkbit:1; /* Why not give one to the luser */
unsigned int C_info:22; /* Info about C_types (typenum) */
unsigned int type:8; /* One of C_TYPE or L_TYPE */

/* Always UNEVALED is on */
/* The six first bits describe */
/* the C data type */

} C ;
...
} L _Header;

38

3.1. Typechecking, Accessing and Creating

For every C data type understood by MediaMath there is an accesser, typechecker and a cre-
ator. The first two are macros the later are functions.

Type Typecheck Accesser Creator
UNINT UNINTEGERP XUNINT C_2_L_uninteger(uninteger)

unsigned int uninteger;
INT INTEGERP XINT C_2_L_integer(integer)

int integer;
FLOAT FLOATP XFLOAT C_2_L_float(fl)

float fl;
UNCHAR UNCHARP XUNCHAR C_2_L_unchar(unch)

unsigned char unch;
CHAR CHARP XCHAR C_2_L_char(ch)

char ch;
STRNG STRNGP XSTRNG C_2_L_string(str)

char *str;
LARGE LARGEP XLARGE C_2_L_large(C_obj,typenum)

L_Ptr C_obj;
int typenum;

FUNCTION FUNCTIONP XFUNCTION C_2_L_function(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

VFUNCTION VFUNCTIONP XFUNCTION C_2_L_function(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

SPECIALFRM SPECIALFRMP XSPECIALFRM C_2_L_specialfrm(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

VSPECIALFRM VSPECIALFRMP XSPECIALFRM C_2_L_specialfrm(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

MACRO MACROP XMACRO C_2_L_macro(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

VMACRO VMACROP XMACRO C_2_L_macro(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

Each one of the above types has the following use:

Type Comment Casted to
UNINT unsigned integer unsigned int
INT signed integer int
FLOAT float float
UNCHAR unsigned character unsigned char
CHAR signed character char
STRNG NULL terminated string char *
LARGE anything larger than a pointer void *
FUNCTION Function with fixed numberof args (L_Ptr (*)())
VFUNCTION Function with varying args (L_Ptr (*)())
SPECIALFRM Special fixed (L_Ptr (*)())

39

VSPECIALFRM Special varying (L_Ptr (*)())
MACRO Macro fixed (L_Ptr (*)())
VMACRO Macro varying (L_Ptr (*)())

All the above types are very uniform in how they are accessed, typechecked and created.
The only exception is theLARGEtype that is not really a type but a class of types. All the type-
checking macros accept one argument and return non zero if the argument is of the correspond-
ing type. The accesser macros accept as argument a Lisp object and return the corresponding C
object. The creator functions accept as argument a C type and return a lisp type.

The large types use the accesser and creator with a type cast (it is not necessary to use casts
but it makes it more portable). The above mentionedLARGEPwill return non zero if the argu-
ment is a large type, but we hardly ever need that, because an image and a vector are both large
andXLARGEdoes not distinguish them.
CHK_LIVETYPE(tname,t_obj) which returns non-nil
if the type oft_obj is tname (tname does not end with
Typenum; this is appended by the macro) and it is not as
yet deallocated. If we want to check only if it is of the cor-
rect type we doCHK_TYPE(tname,t_obj) . We can
check if it is still usable withALIVE(t_obj) that returns
zero if t_obj is deallocated.

int CHK_LIVETYPE(tname,t_obj)
<typename> tname;
L_Ptr t_obj;

int CHK_TYPE(tname,t_obj)
<typename> tname;
L_Ptr t_obj;

int ALIVE(t_obj)
L_Ptr t_obj;

The typenum of a large object can be extracted with
XLARGE_TYPENUM(t_obj) . The recommended way
though is to useint_get_typenum(t_obj) that
returns thetypenum of t_obj no matter if it is large,
integer or structure.

int XLARGE_TYPENUM(t_obj)
L_Ptr t_obj;

int int_get_typenum(t_obj)
L_Ptr t_obj;

3.2. Converting

There are functions that convert between various kinds of numerical types. These are:

L_Ptr to_integer(num)
L_Ptr num;

L_Ptr to_uninteger(num)
L_Ptr num;

L_Ptr to_float(num)
L_Ptr num;

L_Ptr to_char(num)
L_Ptr num;

L_Ptr to_unchar(num)
L_Ptr num;

All these functions accept one argument and return a tagged object of type integer, unsigned inte-
ger, float, character and unsigned character respectively. They will convert anything they can and
issue an error if they cannot.

Quite often these functions are the preferred way to typecheck a function’s arguments,
because with one statement we can typecheck and convert and do it consistently.

40

4. Imagesand matrices

The image and matrix data types are defined in the"image.so" module. They are 18 dif-
ferent types. They can be classified in many different ways: According to dimensionality there
are one (the first three columns below) or two dimensional (the last three columns).

fvec fscln ftmpl fmat fimg ftmpl2
ivec iscln itmpl imat iimg itmpl2
ucvec ucscln uctmpl ucmat ucimg uctmpl2

According to the underlying data type: floating (first line above), integer (second line) and
unsigned character (third line). And according to functionality: matrix-vector for linear algebra
operations, image-scanline for image operations and 1d template - 2d template for convolutions.

There are a few conventions about these types. The two dimensional types have the vertical
dimension and the horizontal dimension. So anything that relates to one of the two dimensions of
the data structure has either av or anh in front of it as invmax or hconvol_fimg_ftmpl .

Another convention is that an image or a scanline of sizeN is from 0 toN − 1 as in C, but a
matrix or vector of sizeN is from 1 toN . And a template is from anything to anything.

All of the above data types are tagged objects of type large. That is they contain a pointer to
a conventional C data structure that holds the image or the vector. There are six such data struc-
tures pointed to by pointers of type:

fone_Dptr used by: fvec fscln ftmpl
ione_Dptr used by: ivec iscln itmpl
ucone_Dptr used by: ucvec ucscln uctmpl
ftwo_Dptr used by: fmat fimg ftmpl2
itwo_Dptr used by: imat iimg itmpl2
uctwo_Dptr used by: ucmat ucimg uctmpl2

We hav ethree different tagged objects sharing the same C structure so that operations like multi-
plication can work differently on matrices and images.

The C structures that hold the floating point image or matrix data are:

typedef struct fone_D *fone_Dptr;
typedef struct ftwo_D *ftwo_Dptr;

typedef struct fone_D
{

int vmin, vmax; /* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */

float *fdata; /* pointer to vmin positions */
/* before the beginning of the */
/* array */

} f one_D;

typedef struct ftwo_D
{

int vmin, vmax;
int hmin, hmax; /* the upper left and lower right */

41

/* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/

float **fdata; /* a pointer that points vmin */
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
/* beginning of every row. */

} f two_D;

The reason that the pointers pointvmin or hmin positions before the actual data is to cir-
cumventa[0]..a[n-1] convention of C. So if pointera points vmin positions before the
actual first element of an array thena[vmin] will be the first element of the array. This way we
can have arraysa[vmin]..a[vmax] for arbitraryvmin andvmax and the index of the first
element of a vector or a template can be different than zero.This technique might not be
portable to architectures that use paged segmented memory, because ANSI C does not require it.

The rows in the 2D structure are allocated all at once from a contiguous space. If one wants
to visit the whole matrix/image can start from&a[vmin][hmin] and increment until the end
of the whole matrix.

The type definition for unsigned character structures and integer structures is similar.

typedef struct ucone_D *ucone_Dptr;
typedef struct uctwo_D *uctwo_Dptr;

typedef struct ucone_D
{

int vmin, vmax; /* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */

unsigned char *ucdata; /* pointer to vmin positions */
/* before the beginning of the */
/* array */

} u cone_D;

typedef struct uctwo_D
{

int vmin, vmax;
int hmin, hmax; /* the upper left and lower right */

/* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/

unsigned char **ucdata; /* a pointer that points vmin */
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
/* beginning of every row. */

} u ctwo_D;

typedef struct ione_D *ione_Dptr;
typedef struct itwo_D *itwo_Dptr;

42

typedef struct ione_D
{

int vmin, vmax; /* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */

int *idata; /* pointer to vmin positions */
/* before the beginning of the */
/* array */

} i one_D;

typedef struct itwo_D
{

int vmin, vmax;
int hmin, hmax; /* the upper left and lower right */

/* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/

int **idata; /* a pointer that points vmin */
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
/* beginning of every row. */

} i two_D;

4.1. Accessingthe first and the last

There are a few macros that return the address of the first and the last element or pixel of a
matrix or image.

unsigned char *UC2DFIRST(twoD)
uctwo_Dptr twoD;

unsigned char *UC2DLAST(twoD)
uctwo_Dptr twoD;

int *I2DFIRST(twoD)
itwo_Dptr twoD;

int *I2DLAST(twoD)
itwo_Dptr twoD;

float *F2DFIRST(twoD)
ftwo_Dptr twoD;

float *F2DLAST(twoD)
ftwo_Dptr twoD;

unsigned char *UC1DFIRST(oneD)
ucone_Dptr oneD;

unsigned char *UC1DLAST(oneD)
ucone_Dptr oneD;

int *I1DFIRST(oneD)
ione_Dptr oneD;

int *I1DLAST(oneD)
ione_Dptr oneD;

float *F1DFIRST(oneD)
fone_Dptr oneD;

float *F1DLAST(oneD)
fone_Dptr oneD;

43

The argument has to be a pointer to the C structure, not a tagged object.

4.2. Converting

Most types can be converted from one to the other. The functions that do that are:

to_fvec to_fscln to_ftmpl
to_fmat to_fimg to_ftmpl2
to_ivec to_iscln to_itmpl
to_imat to_iimg to_itmpl2
to_ucvec to_ucscln to_uctmpl
to_ucmat to_ucimg to_uctmpl2

These turn to the corresponding type whatever can be
turned. All of them accept as argument a tagged type, and
return another tagged type.

L_Ptr to_fvec(t_obj)
L_Ptr t_obj;

L_Ptr to_fscln(t_obj)
L_Ptr t_obj;

etc...
4.3. Creating and destroying

There are functions to create and destroy images and matrices.
mksimple_fmat(vdim,hdim) : Allocates an matrix
with vdim rows andhdim columns.

L_Ptr mksimple_fmat(vdim,hdim)
L_Ptr vdim, hdim;

mksimple_fimg(vdim,hdim) : Allocates an image
with vdim rows andhdim columns.

L_Ptr mksimple_fimg(vdim,hdim)
L_Ptr vdim, hdim;

mksimple_ftmpl2(vmin,vmax,hmin,hmax) :
Allocates an 2D template fromvmin to vmax andhmin
to hmax.

L_Ptr mksimple_ftmpl2(vmin,vmax,
hmin,hmax)

L_Ptr vmin,vmax,hmin,hmax;

mksimple_fvec(vdim) : Allocates a vector of floats
with vdim elements.

L_Ptr mksimple_fvec(vdim)
L_Ptr vdim;

mksimple_ftmpl(vmin,vmax) : Allocates atemplate
of floats fromvmin to vmax.

L_Ptr mksimple_ftmpl(vmin,vmax)
L_Ptr vmin,vmax;

mksimple_fscln(vdim) : Allocates a scanline of
floats withvdim elements.

L_Ptr mksimple_fscln(vdim)
L_Ptr vdim;

The functions above, are for floating point. There is a set for unsigned characters and one for
integers. Just replace thef with uc or i .

There is a set of routines to deallocate images, matrices etc, and can be called explicitly.
Normaly these are called by the garbage collector.

free_fvec free_fscln free_ftmpl
free_fmat free_fimg free_ftmpl2
free_ivec free_iscln free_itmpl
free_imat free_iimg free_itmpl2
free_ucvec free_ucscln free_uctmpl
free_ucmat free_ucimg free_uctmpl2

44

All of them accept as argument the tagged object we want to discard and returnNIL . All parts of
the abject that were obtained withmalloc() are freed and the object is marked so that the
macroALIVE returns 0.

The casual writer of C modules will use a fraction only of the above macros and functions.
It is better if we see their use with a few examples.

5. Examples

5.1. Thresholding an image

We can study how to accept arguments, create arrays that return the result etc. by having a
look at thresh_fimg . Like any function that is accessible from MediaMath, it has a header
that can be created on emacs by typingMETA-x. This will create a header that we can fill up.

It is a good practice to separate the driver function from the actual function that does the
work. thresh_fimg is just the driver function and does all the error checking and data type
manipulation.

/*awkstart**
Name: thresh_fimg
MinArgs: 2
MaxArgs: 2
Type: function
Synopsis: thresh_fimg(,<number>)
Doc: Threshold an image of floats.
Doc: Returns an image of unsigned characters of the same size as
Doc: that is 1 where exceeds <number> and 0 everywhere else.
Doc: All operations are in float.
SEE: max_fimg, min_fimg
Example: thresh_fimg(img1,10);
**awkstop*/

L_Ptr thresh_fimg(img,lnum)
L_Ptr img,lnum;

{
L_Ptr res;
int vd, hd;
ftwo_Dptr fimg;
float num;

img = to_fimg(img);
lnum = to_float(lnum);

num = XFLOAT(lnum);
fimg = (ftwo_Dptr)XLARGE(img);

vd = fimg->vmax-fimg->vmin+1;
hd = fimg->hmax-fimg->hmin+1;
res = mksimple_ucimg(C_2_L_integer(vd),C_2_L_integer(hd));

ftwo_D_thresh(fimg, num, (uctwo_Dptr) XLARGE(res));

45

return res;
}

Every well behaved function that is callable from MediaMath should typecheck its arguments. If
any argument is not among the kinds we expect then we issue an error. Then we convert every
argument to the most convenient type. If we want for instance a number, we can accept an inte-
ger, a float, an unsigned character etc, and then we convert to the type we really want: a float. To
make life easier we just callto_float to convert it to float (if it cannot be converted then func-
tion to_float will issue an error). The same goes for images.This explains the first two
executable lines.

If all went well then we extract the contents of these two objects. Remember, everything
that is declaredL_Ptr is a whole data structure that contains tags etc. If the tag says there is an
integer inside or an image we have to get it out. We can use the accesser macros to do that. The
XLARGEmacro requires casting because it can be used for many types including images, matri-
ces and vectors. And that is what the next two lines do.

The next three lines create the image that will store the result. They extract the dimensions
of the image (notice that although we know that for an imagefimg->vmin is zero, we still do
the subtraction to avoid having to rewrite it if the definition of an image ever becomes more gen-
eral) and then callmksimple_ucimg . This is a function that can be called from the Media-
Math interpreter also so needs tagged objects as arguments.

After we do all these we pass the proper arguments to a conventional C routine that knows
nothing about MediaMath tags and headers. We also provide the space to it to store the result
(again usingXLARGE). And then we return the result.

The functionftwo_D_thresh does the actual work. It has minimum interference with
the rest of MediaMath and can be used in other programs easily. It does not do any error check-
ing other than things that cannot be checked out by the driver function above (in this case there is
nothing that cannot be checked by the calling function.

int ftwo_D_thresh(fimg,num,res)
ftwo_Dptr fimg;
uctwo_Dptr res;
float num;

{
int vmin, vmax, hmin, hmax;
int i,j;
float *ff;
unsigned char *fr;

vmin = fimg->vmin;
vmax = fimg->vmax;
hmin = fimg->hmin;
hmax = fimg->hmax;

ff = F2DFIRST(fimg);
fr = UC2DFIRST(res);

for (i=vmin; i<=vmax; i++)

46

for (j=hmin; j<=hmax; j++)
{

if (num > *(ff++)) *(fr++) = 0;
else *(fr++) = 1;

}
return 0;

}

The first thing the function does is retrieve the sizes of the image. The first 4 statements do just
this. The next two get the address of the first pixel of both the source image and the resulting
image. Both of them have the same number of pixels (the driver function made sure of that). This
is what the two next statements do. The next set of statements is the double for-loop that does
the job. It simply scans the two images at the same time.

The macrosF2DFIRST andUC2DFIRSTreturn the address of the first pixel. It is guaran-
teed that the rows of an image occupy consecutive places in memory, so for simple operations we
can just scan from the top left to the bottom right image continuously.

5.2. Normof an image

Another example is thenorm_fimg function. It accepts as argument an image and returns
a floating point number.

/*awkstart**
Name: norm_fimg
MinArgs: 1
MaxArgs: 1
Type: function
Synopsis: norm_fimg(<fimg>)
Doc: Returns the Frobenious norm of <fimg>.
SEE: gnorm
Example: gnorm(mk_fimg(2,3,[[1,2,3],[4,5,6]]));
**awkstop*/

L_Ptr norm_fimg(fimg)
L_Ptr fimg;

{
if (!CHK_LIVETYPE(Sfimg,fimg))

error_signal(Snorm_fimg,SWrongTypeArg,NIL,fimg);

return C_2_L_float(ftwo_D_norm((ftwo_Dptr)XLARGE(fimg)));
}

The driver of this function is much simpler because we need not allocate any image or other
structure. The function only checks if the argument is an image of floating point numbers and it
is alive (not deallocated). It then callsftwo_D_norm to do the work which returns a float
which is passed toC_2_L_float to put a tag on it. That’s it.

Function ftwo_D_norm is no more difficult. It accepts as argument a two dimensional
function and returns a float (the argument in this function ismat because it is also used for the
matrix norm (Frobenious)).

47

float ftwo_D_norm(mat)
ftwo_Dptr mat;

{
int i,j;
int imin, imax, jmin, jmax;
register float *ff1, temp, res;

imin = mat->vmin;
imax = mat->vmax;
jmin = mat->hmin;
jmax = mat->hmax;
ff1 = F2DFIRST(mat);

res = 0;
for (i=imin; i<=imax; i++)

for (j=jmin; j<=jmax; j++)
{

temp = *(ff1++);
res += temp*temp;

}
return sqrt(res);

}

The function retrieves the bounds of the array and the address of the first element and the scans
the whole array accumulating the result in the variableres . It then returns the square root of
res .

5.3. Transpose a matrix

The transpose routine is a bit tricky because the transpose of a matrix might be a vector
when the matrix has one row and many columns.

/*awkstart**
Name: transp_fmat
MinArgs: 1
MaxArgs: 1
Type: function
Synopsis: transp_fmat(<fmat>)
Doc: Returns the transpose of a matrix.
SEE: gtranspose
Example: mk_fmat(2,2,[[1,2],[3,4]])ˆT;
**awkstop*/

L_Ptr transp_fmat(fmat)
L_Ptr fmat;

{
ftwo_Dptr mat;
L_Ptr res;
int vd, hd;

if (!CHK_LIVETYPE(Sfmat,fmat))
error_signal(Stransp_fmat,SWrongTypeArg,NIL,fmat);

48

mat = (ftwo_Dptr)XLARGE(fmat);

vd = mat->vmax-mat->vmin+1;
hd = mat->hmax-mat->hmin+1;
if (vd==1)

{
res = mksimple_fvec(C_2_L_integer(hd));
ftwo_D_transpose1(mat,(fone_Dptr)XLARGE(res));

}
else

{
res = mksimple_fmat(C_2_L_integer(hd),C_2_L_integer(vd));
ftwo_D_transpose(mat,(ftwo_Dptr)XLARGE(res));

}
return res;

}

After we check if the type is what we expect, we extract the pointer to the C structure and we get
the size of the matrix. We check the number of rows to decide which version of
ftwo_D_transpose we call. The allocation is done inside theif because we need to allocate
different structures in each case.

The other interesting thing abouttransp_fmat is thatftwo_D_transpose scans the
array in two different ways: by incrementing the pointer starting from the beginning of the array
and by explicit array references.

int ftwo_D_transpose(mat,res)
ftwo_Dptr mat, res;

{
int i,j;
int imin,jmin,imax,jmax;
float *ff1, **fr;

imin = mat->vmin;
imax = mat->vmax;
jmin = mat->hmin;
jmax = mat->hmax;

ff1 = F2DFIRST(mat);
fr = res->fdata;

for (i=imin; i<=imax; i++)
for (j=jmin; j<=jmax; j++)

fr[j][i] = *(ff1++);
return 0;

}

One of the two vectors has to be scanned column by column, so we have to use array referencing
for at least one of them.

49

Table of Contents

Part 1
Introduction to MediaMath programming language

1 A Gentle Introduction... 2

1.1 Asimple example ...2

1.2 Anotherexample ...3

2 Syntax of the language.. 4

2.1 Expressions... 4

2.1.1 Operators... 4

2.1.2 Operands... 5

2.2 Assignmentexpressions ..9

3 Miscellaneous ...9

4 Library functions... 9

4.1 Imageand matrix library... 9

4.2 Creatingand destroying images and matrices.. 10

4.3 Accessingimages and matrices.. 10

4.4 Buildingimages and matrices... 11

4.5 Convolutions ...12

4.6 Arithmeticoperations ..12

5 Math library .. 13

6 List processing library... 13

Part 2
Run time linking of C modules

1 Overview of the C modules.. 16

2 Writing a simple function... 17

2.1 Improving our first module... 19

3 Variable Arguments ..20

3.1 Addinga few more features.. 22

4 Types ...23

ii

4.1 Classification... 23

4.2 Runtime representation.. 24

4.3 Keeping track of the types.. 25

4.4 Defininga new C type ...26

4.4.1 Example:define floating image types... 26

5 Linking ..29

Part 3
C modules: Reference manual

1 General ..32

2 Lisp types.. 32

3 Cobjects .. 38

3.1 Typechecking, Accessing and Creating.. 39

3.2 Converting ...40

4 Images and matrices.. 41

4.1 Accessingthe first and the last.. 43

4.2 Converting ...44

4.3 Creatingand destroying ..44

5 Examples ...45

5.1 Thresholdingan image.. 45

5.2 Normof an image... 47

5.3 Transpose a matrix.. 48

iii

iv

