
A Survey of Software Refactoring
Tom Mens, Member, IEEE, and Tom Tourwé

Abstract—This paper provides an extensive overview of existing research in the field of software refactoring. This research is

compared and discussed based on a number of different criteria: the refactoring activities that are supported, the specific techniques

and formalisms that are used for supporting these activities, the types of software artifacts that are being refactored, the important

issues that need to be taken into account when building refactoring tool support, and the effect of refactoring on the software process.

A running example is used throughout the paper to explain and illustrate the main concepts.

Index Terms—Coding tools and techniques, programming environments/construction tools, restructuring, reverse engineering, and

reengineering.

�

1 INTRODUCTION

AN intrinsic property of software in a real-world
environment is its need to evolve. As the software is

enhanced, modified, and adapted to new requirements, the
code becomes more complex and drifts away from its
original design, thereby lowering the quality of the soft-
ware. Because of this, the major part of the total software
development cost is devoted to software maintenance [1],
[2], [3]. Better software development methods and tools do
not solve this problem because their increased capacity is
used to implement more new requirements within the same
time frame [4], making the software more complex again.

To cope with this spiral of complexity, there is an urgent
need for techniques that reduce software complexity by
incrementally improving the internal software quality. The
research domain that addresses this problem is referred to
as restructuring [5], [79] or, in the specific case of object-
oriented software development, refactoring [6], [7].

According to the taxonomy of Chikofsky and Cross [8],
restructuring is defined as “the transformation from one
representation form to another at the same relative abstraction

level, while preserving the subject system’s external behavior

(functionality and semantics). A restructuring transformation is

often one of appearance, such as altering code to improve its

structure in the traditional sense of structured design. While
restructuring creates new versions that implement or propose

change to the subject system, it does not normally involve

modifications because of new requirements. However, it may lead

to better observations of the subject system that suggest changes

that would improve aspects of the system.”
The term refactoring was originally introduced by

Opdyke in his PhD dissertation [6]. Refactoring is basically
the object-oriented variant of restructuring: “the process of

changing a [object-oriented] software system in such a way that it

does not alter the external behavior of the code, yet improves its
internal structure” [7]. The key idea here is to redistribute
classes, variables, and methods across the class hierarchy in
order to facilitate future adaptations and extensions.

In the context of software evolution, restructuring and
refactoring are used to improve the quality of the software
(e.g., extensibility, modularity, reusability, complexity,
maintainability, efficiency). Refactoring and restructuring
are also used in the context of reengineering [9], which is the
examination and alteration of a subject system to recon-
stitute it in a new form and the subsequent implementation
of the new form [8]. In this context, restructuring is needed
to convert legacy code or deteriorated code into a more
modular or structured form [10] or even to migrate code to
a different programming language or even language
paradigm [11].

The remainder of this paper is structured as follows:
Section 2 explains general ideas of refactoring by means of
an illustrative example. Section 3 identifies and explains the
different refactoring activities. Section 4 provides an over-
view of various formalisms and techniques that can be used
to support these refactoring activities. Section 5 summarizes
different types of software artifacts for which refactoring
support has been provided. Section 6 discusses essential
issues that have to be considered in developing refactoring
tools. Section 7 discusses how refactoring fits in the
software development process. Finally, Section 8 concludes.

2 RUNNING EXAMPLE

In this section, we introduce a running example that will be
used throughout the paper. The example illustrates a
typical nontrivial refactoring of an object-oriented design.
The initial design depicted in Fig. 1 represents an object-
oriented class hierarchy. It shows a Document class that is
refined into three specific subclasses ASCIIDoc, PSDoc, and
PDFDoc. A document provides preview and print facilities,
which are realized by invoking the appropriate methods in
the associated Previewer and Printer classes, respectively.
Before these methods can be invoked, some preprocessing
or conversion needs to be done, which is realized differently
for each of the Document subclasses. In Fig. 1, this is

126 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 2, FEBRUARY 2004

. T. Mens is with the Université de Mons-Hainaut, Avenue du Champ de
Mars 6, B 7000 Mons, Belgium. E-mail: tom.mens@umh.ac.be.

. T. Tourwé is with the Centrum voor Wiskunde en Informatica, PO Box
94079, NL 1090 GB Amsterdam, The Netherlands.
E-mail: tom.tourwe@cwi.nl.

Manuscript received 30 Apr. 2003; revised 30 Dec. 2003; accepted 6 Jan. 2004.
Recommended for acceptance by J.-M. Jezequel.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0047-0403.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

represented by the different code fragments A, B, C and X, Y,
Z, respectively.

This design is not optimal because different functional-
ities of the Document class are distributed over all the
subclasses. In order to add a new functionality to the
Document class, such as a text search or a spell checker, we
need to change every subclass of Document and we need to
define the appropriate helper classes. Moreover, many such
evolutions increase the complexity and reduce the under-
standability of the design because the Document class has
many associations and no explicit relationship between all
helper classes exists, although their roles are similar.

To overcome these problems, the design needs to be
refactored. By introducing a so-called Visitor design pattern
[12], the same functionality can be achieved in a more
localized fashion, while, at the same time, the under-
standability of the design is improved. This is illustrated in
Fig. 2. The idea is to introduce a Visitor class hierarchy that
groups all helper classes and defines a common interface for
them (the visit* methods). At the same time, a generic accept
method is implemented in all classes of the Document
hierarchy. The accept method in each subclass calls a
method, specifically defined for that subclass, of the Visitor
hierarchy interface.

In this refactored design model, new functionality can
be added by simply creating a new subclass of Visitor,
and implementing the visit* methods appropriately. As
can be seen in Fig. 2, the implementations of the print and
preview methods previously in subclasses of Document
(i.e., A, B, C, X, Y, Z) have been moved to the visit*

methods of the Printer and Previewer classes (i.e., A’, B’,

C’, X’, Y’, Z’).
Although the above example is relatively simple, it

already requires over 20 primitive refactorings to introduce
the Visitor design pattern:

1. The print method in each Document subclass (three
occurrences) is moved to class Printer using a
MoveMethod refactoring.

2. To avoid name conflicts, each of the three moved
print methods needs to be renamed first to a visit*
method using a RenameMethod refactoring.

3. The previewmethod in each Document subclass (three
occurrences) is moved to class Previewer using a
MoveMethod refactoring.

4. To avoid name conflicts, each of the three moved
preview methods needs to be renamed first to a visit*
method using a RenameMethod refactoring.

5. An abstract Visitor class is introduced as a super-
class for Printer and Previewer using an AddClass
refactoring.

6. Three abstract visit* methods are introduced in the
new Visitor class using an AddMethod refactoring.

7. An accept method is introduced in all three
subclasses of Document by extracting it from the
print method and preview methods, using an
ExtractMethod refactoring.

8. All preview and print methods now call the accept
method with an instance of the appropriate Visitor
subclass. Therefore, their definition can be pulled up
to the Document class by using a PullUpMethod
refactoring.

The refactorings in the above list are referred to as
primitive refactorings. They are elementary behavior-preser-
ving transformations that can be used as building blocks to
create the so-called composite refactorings [6], [13]. These
composite refactorings are usually defined as a sequence of
primitive refactorings and reflect more complex behavior-
preserving transformations that are more meaningful to the
user. For example, the six refactorings in Steps 1 and 2 of
the above enumeration can be combined into the single
composite refactoring MoveMethodsToVisitor shown in
Fig. 3. In a similar way, Steps 3 and 4 in the above
enumeration can be combined into a single composite
refactoring.

MENS AND TOURW�EE: A SURVEY OF SOFTWARE REFACTORING 127

Fig. 1. Document class hierarchy and helper classes.

Fig. 2. Refactored design model for the Document class hierarchy.

3 REFACTORING ACTIVITIES

The refactoring process consists of a number of distinct
activities:

1. Identify where the software should be refactored.
2. Determine which refactoring(s) should be applied to

the identified places.
3. Guarantee that the applied refactoring preserves

behavior.
4. Apply the refactoring.
5. Assess the effect of the refactoring on quality

characteristics of the software (e.g., complexity,
understandability, maintainability) or the process
(e.g., productivity, cost, effort).

6. Maintain the consistency between the refactored
program code and other software artifacts (such as
documentation, design documents, requirements
specifications, tests, etc.).

As will be illustrated below, each of these activities can
be supported by different tools, techniques or formalisms.

3.1 Identifying where to Apply which Refactorings

A first decision that needs to be made here is to determine
the appropriate level of abstraction to apply the refactoring.
Should the refactorings be applied to the program itself (i.e.,
the source code) or to more abstract software artifacts such
as design models or requirements documents, for exam-
ple?1 We will tackle this particular question in detail in
Section 5 and restrict ourselves to the subdomain of program
refactoring here. In this subdomain, the activity of identify-
ing the parts of the program that require refactoring
(activity 1) and proposing refactorings that should be
applied to these (activity 2) are usually combined.

Kataoka et al. implemented the Daikon tool to indicate
where refactorings might be applicable by automatically
detecting program invariants [14]. One invariant may be
that a certain parameter of a method is always constant, or
is a function of the other parameters of a method. In that
case, it might be possible to apply a removeParameter
refactoring. The main problem with this approach is that
it requires dynamic analysis of the runtime behavior: The
application needs to be executed to infer the program

invariants. To this extent, the tool uses a representative set
of test suites. It is, however, impossible to guarantee that a
test suite covers all possible runs of a program. Therefore,
the invariants may not hold in general. Nonetheless, very
good results have been obtained in practice. Moreover, the
approach is complementary to other approaches that rely
on static information.

Probably the most widespread approach to detect
program parts that require refactoring is the identification
of bad smells. According to Beck, bad smells are “struc-
tures in the code that suggest (sometimes scream for) the
possibility of refactoring” [7]. As a concrete example of a
bad smell, reconsider the Document class hierarchy design
in Fig. 1 of Section 2. By analyzing the code fragments A,
B, C and X, Y, Z, respectively, it is very likely that one can
detect a significant amount of code duplication. This is a
typical example of a bad smell since code duplication
should be avoided as it decreases maintainability. Bala-
zinska et al. use a clone analysis tool to identify
duplicated code that suggests candidates for refactoring
[15]. Ducasse et al. sketch an approach to detect
duplicated code in software and propose refactorings that
can eliminate this duplication [16]. The approach is based
on an object-oriented meta model of the source code and a
tool that is capable of detecting duplication in code. The
proposed refactorings consist of removing duplicated
methods, extracting duplicated code from within a
method and inserting an intermediate subclass to factor
out the common code.

Fowler informally links bad smells to refactorings [7].
Tourwé and Mens use a semiautomated approach based on
logic meta programming to formally specify and detect
these bad smells and to propose refactoring opportunities
that remove these bad smells [17]. A more ad hoc approach
to detect structural weaknesses in object-oriented source
code and solve them by refactorings is proposed by
Dudziak and Wloka [19]. Van Emden and Moonen combine
the detection of bad smells in Java with a visualization
mechanism [18]. Simon et al. use object-oriented metrics to
identify bad smells and propose adequate refactorings [20].
They focus on use relations to propose move method/attribute
and extract/inline class refactorings. The key underlying
concept is the distance-based cohesion metric, which measures
the degree to which methods and variables of a class belong
together. Especially in combination with software visualiza-
tion, the use of object-oriented metrics seems well-suited to
detect places in the source code that are in need of
refactoring [20], [21].

A final but important issue is that identification of which
refactorings to apply can be highly dependent on the
particular application domain. If we restrict ourselves to, for
example, Web-based software, the question of “where and
why” to refactor is partially answered by the high-level
refactorings from [22].

3.2 Guaranteeing that the Refactoring Preserves
Software Behavior

By definition, a refactoring should not alter the behavior of
the software. Unfortunately, a precise definition of behavior
is rarely provided or may be inefficient to be checked in
practice.

128 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 2, FEBRUARY 2004

1. As a terminological side note, when we use the term program in the
remainder of this paper, we specifically refer to the source code or
executable code. In contrast, when we use the term software, we refer to any
type of software artifact (including code, design models, requirements
specifications, etc.).

Fig. 3. Composite refactoring for renaming and moving print methods

from the Document subclasses to the Printer class.

The original definition of behavior preservation as
suggested by Opdyke [6] states that, for the same set of
input values, the resulting set of output values should be
the same before and after the refactoring. Opdyke suggests
to ensure this particular notion of behavior preservation by
specifying refactoring preconditions. As a concrete example of
such a refactoring precondition, reconsider the primitive
refactorings in the running example of Section 2. The first
refactoring suggested is MoveMethod(print,ASCIIDoc,
Printer). It has a number of necessary preconditions: The
classes ASCIIDoc and Printer should be defined, the method
print should be implemented in ASCIIDoc, and the method
signature of print should not be present in class Printer. As
can be seen in Fig. 1, the third precondition is not satisfied,
which is precisely why the refactoring RenameMethod
(print,ASCIIDoc,visitASCII) was suggested to avoid the
method signature conflict.

In many application domains, requiring the preserva-
tion of input-output behavior is insufficient since many
other aspects of the behavior may be relevant as well.
This implies that we need a wider range of definitions of
behavior that may or may not be preserved by a
refactoring, depending on domain-specific or even user-
specific concerns:

. For real-time software, an essential aspect of the
behavior is the execution time of certain (sequences
of) operations. In other words, refactorings should
preserve all kinds of temporal constraints.

. For embedded software, memory constraints and
power consumption are also important aspects of
the behavior that may need to be preserved by a
refactoring.

. For safety-critical software, there are concrete notions
of safety (e.g., liveness) that need to be preserved by
a refactoring.

One may deal with behavior preservation in a very
pragmatic way, for example, by means of a rigorous testing
discipline. If we have an extensive set of test cases and all
these tests still pass after the refactoring, there is good
evidence that the refactoring preserves the program
behavior. Unfortunately, some refactorings will invalidate
existing tests, even if the refactoring does not alter the
behavior [23], [24]. The reason for this is that the tests may
rely on the program structure that is modified by the
refactoring.

Another pragmatic, but slightly more formal, approach is
to adopt a weaker notion of behavior preservation that is
insufficient to formally guarantee the full preservation of
program semantics, but that works well in many practical
situations. For example, we can define a notion of call
preservation which guarantees that all method calls are
preserved by the refactoring [25]. In the presence of a type
system, one can show that a refactoring preserves type
correctness [26].

A more fundamental approach is to formally prove that
refactorings preserve the full program semantics. For a
language with a simple and formally defined semantics,
such as the logic programming language Prolog, one can
prove that some refactorings that improve the efficiency
actually preserve the program semantics [27]. For more

complex languages such as C++, where a formal semantics
is extremely difficult to define, we typically have to put
restrictions on the allowed language constructs or refactor-
ings, and the applicability of a refactoring tool may be
limited to a particular version of a particular compiler [28].

3.3 Assessing the Effect of Refactoring on Quality

For any piece of software, we can specify its external quality
attributes (such as robustness, extensibility, reusability,
performance). Refactorings can be classified according to
which of these quality attributes they affect. This allows us
to improve the quality of software by applying the relevant
refactorings at the right places. To achieve this, each
refactoring has to be analyzed according to its particular
purpose and effect. Some refactorings remove code redun-
dancy, some raise the level of abstraction, some enhance the
reusability, and so on. This effect can be estimated to a
certain extent by expressing the refactorings in terms of the
internal quality attributes they affect (such as size, complex-
ity, coupling, and cohesion).

An important software quality characteristic that can be
affected by refactoring is performance. It is a common
misconception that improving the program structure has a
negative effect on the program performance. In the context
of logic and functional programs, restructuring transforma-
tions typically have the goal of improving program
performance while preserving the program semantics [27],
[29]. In the context of object-oriented programs, Demeyer
[30] investigated the effect of refactorings that replace
conditional logic by polymorphism. He concludes that the
program performance gets better after the refactoring
because of the efficient way in which current compiler
technology optimizes polymorphic methods.

To measure or estimate the impact of a refactoring on
quality characteristics, many different techniques can be
used. Examples include, but are not limited to, software
metrics, empirical measurements, controlled experiments,
and statistical techniques. Kataoka et al. propose coupling
metrics as an evaluation method to determine the effect of
refactoring on the maintainability of the program [31].
Tahvildari and Kontogiannis. encode design decisions as
soft-goal graphs to guide the application of the transforma-
tion process [32]. These soft-goal graphs describe correla-
tions between quality attributes. The association of
refactorings with a possible effect on soft-goals addresses
maintainability enhancements through primitive and com-
posite refactorings. Tahvildari and Kontogiannis use a
catalogue of object-oriented metrics as an indicator to
automatically detect where a particular refactoring can be
applied to improve the software quality [33]. This is
achieved by analyzing the impact of each refactoring on
these object-oriented metrics.

3.4 Maintaining Consistency of Refactored
Software

Typically, software development involves a wide range of
software artifacts such as requirements specifications, soft-
ware architectures, design models, source code, documen-
tation, test suites, and so on. If we refactor any of these
software artifacts, we need mechanisms to maintain their
consistency. Since the activity of inconsistency management

MENS AND TOURW�EE: A SURVEY OF SOFTWARE REFACTORING 129

is a research area in its own right [34], [35], [36], we will not
treat it in detail here. We only discuss a few approaches that
relate consistency maintenance to refactoring.

Bottoni et al. propose maintaining consistency between
the program and design models by describing refactoring as
coordinated graph transformation schemes [37]. These
schemes have to be instantiated according to the specific
code modification and applied to the design models
affected by the change.

Within the same level of abstraction, there is also a need
to maintain consistency. For example, if we want to refactor
source code, we have to ensure that the corresponding unit
tests are kept consistent [23]. Similarly, if we have different
kinds of UML design models and any of these is being
refactored, the others have to be kept consistent. Van Der
Straeten et al. suggest to do this by means of logic rules [39].

Rajlich uses the technique of change propagation to cope
with inconsistencies between different software artifacts
[38]. This technique deals with the phenomenon that, when
one part of a software is changed, dependent parts of the
software may need to be changed as well.

4 REFACTORING TECHNIQUES AND FORMALISMS

A wide variety of formalisms and techniques have been
proposed and used to deal with one or more refactoring
activities. We discuss two such techniques in detail: the use
of assertions (preconditions, postconditions, and invariants)
and the use of graph transformation. Next, we discuss how
formalisms can help us to guarantee program correctness
and preservation in the context of refactoring. Finally, we
provide an indicative, but inevitably incomplete, list of
other useful techniques to support refactoring activities.

4.1 Invariants, Pre and Postconditions

A refactoring’s definition often includes invariants that
should remain satisfied and pre and postconditions that
should hold before and after the refactoring has been
applied. These constitute a lightweight and automatically
verifiable means to ensure that (certain parts of) the
behavior of the software is preserved by the refactoring. A
concrete example of the use of preconditions was already
presented for the refactoring MoveMethod (print,ASCII-
Doc,Printer) in Section 3.2. A set of postconditions for the
same refactoring would be: 1) The print method must be
implemented in Printer after the refactoring, 2) the method
signature of print does not exist in ASCIIDoc after the
refactoring. An example of an invariant is the fact that
classes ASCIIDoc and Printer are defined before and after
the refactoring.

The use of preconditions and invariants has been
suggested repeatedly in research literature as a way to
address the problem of behavior preservation when
restructuring or refactoring software artifacts. In the context
of object-oriented database schemas (which are similar to
UML class diagrams), Banerjee and Kim identified a set of
invariants that preserve the behavior of these schemas [40].
Opdyke adopted this approach to object-oriented programs
and additionally provided preconditions or enabling condi-
tions for each refactoring [6]. He argued that these
preconditions preserve the invariants. Roberts used first

order predicate calculus to specify these preconditions in a
formal way [41]. The notion of preconditions or applic-
ability conditions is also available in the formal restructur-
ing approach of Ward and Bennett, using the formal
language WSL [42].

Preconditions may vary depending on the complexity of
the language studied. More complex languages typically
require more preconditions on the refactoring in order to
preserve the invariants. Unfortunately, there are some
practical problems with preconditions. One problem is that
the static checking of some preconditions may require very
expensive analysis or may even be impossible. Another
problem is that the preconditions do not consider the size or
structure of the program [6]. For example, C++ programs
may perform integer arithmetic with the address of a
variable in a class, which is problematic if the refactoring
changes the physical ordering of the variables in that class.

A number of suggestions have been made to overcome
the above problems with preconditions. Tip et al. suggest
using type constraints to efficiently verify preconditions
that depend on interprocedural relationships between
variable types [26]. This is particularly useful for refactor-
ings that are concerned with generalization. Roberts
suggests augmenting refactorings with postconditions [41].
These postconditions are particularly useful for those
invariants that rely on dynamic information that is difficult
to express, or expensive to check statically, with precondi-
tions. Postconditions can also be used to increase the
efficiency of a refactoring tool. From a theoretical point of
view, it can be shown that a set of postconditions can be
translated into an equivalent set of preconditions [43].
Roberts provided an algorithm to perform this translation
for sequences of program transformations. �OO Cinnéide and
Nixon extended this algorithm to deal with iteration and
conditional constructs [13].

4.2 Graph Transformation

Traditionally, refactorings are specified as parameterized
program transformations along with a set of pre and
postconditions that guarantee behavior preservation if
satisfied [6], [44]. If we adopt this view, there is a direct
correspondence between refactorings and graph transforma-
tions. Programs (or other kinds of software artifacts) can be
expressed as graphs, refactorings correspond to graph
production rules, the application of a refactoring corresponds
to a graph transformation, refactoring pre and postconditions
can be expressed as application pre and postconditions [43],
[45]. Table 1 summarizes some formal properties of graph
transformation that may be used to address important
issues in refactoring.

Hence, it is not surprising that the theory of graph
transformations has been used to provide more formal
support for software refactoring. Mens et al. use the graph
rewriting formalism to prove that refactorings preserve
certain kinds of relationships (updates, accesses, and
invocations) that can be inferred statically from the source
code [25]. Bottoni et al. describe refactorings as coordinated
graph transformation schemes in order to maintain con-
sistency between a program and its design when any of
them evolves by means of a refactoring [37]. Heckel [43]
uses graph transformations to formally prove the claim

130 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 2, FEBRUARY 2004

(and corresponding algorithm) of Roberts [41] that any set

of refactoring postconditions can be translated into an

equivalent set of preconditions. Van Eetvelde and Janssens

[46] propose a hierarchical graph transformation approach

to be able to view and manipulate the software and its

refactorings at different levels of detail.
The properties of sequential and parallel (in)dependence

of graph transformations are also extremely suitable to

reason about the dependence between refactorings. Two

refactorings are independent if they can be applied in any

order, i.e., the order in which they are applied does not

affect the end result. This gives rise to a whole range of

useful application scenarios.
One scenario is the serialization of refactorings that have

been applied in parallel to the same software artifact [102].

During this serialization process, it is possible that conflicts

arise because the refactorings make incompatible changes.

To detect and resolve such conflicts, one can rely on existing

results about parallelism and confluence [110] and critical

pair analysis [111].
Analysis of sequential dependencies can also be used to

reorder a given sequence of refactorings, for example, to

normalize the sequence, to identify refactorings that

annihilate each other’s effect, to regroup subsequences into

predefined composite refactorings, and so on.
When building composite refactorings, it is useful to

determine which refactorings have to be applied sequen-

tially and which refactorings are mutually independent

[41]. For example, the composite refactoring shown in Fig. 3

of Section 2 consists of a sequence of six primitive

refactorings, but there are only three sequential dependen-

cies (represented by straight arrows): Each MoveMethod

refactoring has to be preceded by a Rename refactoring.

The order in which the three (Rename,MoveMethod) pairs

have to be applied, however, is irrelevant. This is

represented by dashed arrows. This means that, to increase

the efficiency of the refactoring, one may decide to apply

these three pairs of primitive refactorings in parallel.

4.3 Formalisms for Program Correctness and
Preservation

Formal approaches are needed to guarantee that certain
program properties remain invariant to a program trans-
formation. We will make a distinction between the property
of program correctness and the property of preservation.2

Program correctness is the property that a program will
work without errors. The preservation property of a
program transformation guarantees that (some aspect of)
the program behavior is preserved by the transformation.

Obviously, any program transformation should preserve
the syntactic rules (or well-formedness rules) of the
programming language. After the transformation, the soft-
ware should still be syntactically correct. This can be
checked by using a scanner and a parser. The semantics of
the program should also remain correct, i.e., the program
should not give rise to runtime errors. Unfortunately, the
correctness property is in general undecidable. Gupta et al.
showed that we cannot prove, for an arbitrary running
program and an arbitrary update to it, that the update is
valid in the sense that it will eventually result in a reachable
program state of the newly added program code [63].
Because of the undecidability of this property, we can only
take a conservative approach. For example, if we only
consider restructurings of the same algorithm (as opposed
to changes to program functionality), a syntactic analysis of
the old and new program code can identify program points
that preserve update validity.

The preservation property can either be checked statically
or dynamically. The checking of refactoring preconditions
[6], [41] can be considered as a static approach. However,
the preconditions that are expressed in first-order predicate
logic are only a conservative approximation and, hence,
rule out many legal refactorings. Mens et al. suggest other
notions of behavior preservation that can be checked
statically and show how this can be realized using a graph
transformation formalism [25]. Access preservation means
that all variable accesses should be preserved by the
refactoring. Update preservation means that all variable
updates should be preserved by the refactoring. Call
preservationmeans that all method calls should be preserved
by the refactoring. Another static way to check preservation
of program behavior to a certain extent is by means of type
checking: All typed software entities should still have the
same type after the refactoring. This constraint can be
loosened by allowing a type to be replaced by a subtype (in
the presence of a subtyping mechanism).

To be able to check that more aspects of the program
behavior are preserved, one needs to remove the restric-
tions imposed by static conservative approximations by
taking more dynamic information into account. However,
one should be aware that even then it is impossible to
guarantee full behavior preservation in its generality.
Moore and Bennett propose a more dynamic notion of call
preservation, where the transformation guarantees that the
same messages in a class will be sent in the same order [64].

MENS AND TOURW�EE: A SURVEY OF SOFTWARE REFACTORING 131

TABLE 1
Correspondence between Refactoring

and Graph Transformation

2. This distinction is not made in the domain of program transformation
for functional languages [29]. In this domain, the term correctness is used to
indicate that a program transformation preserves the extensional meaning
of programs. We will not use correctness in this sense because it leads to
confusion with the more widely accepted definition of program correctness.

Mortimer presents an approach for restructuring program
data types to identify, group, and/or restrict their possible
values, while at the same time preserving the dynamic
behavior of the software [65].

Bergstein defines a set of primitive refactorings that
reorganize classes and methods across a class hierarchy in
such a way that the same set of objects can still be
instantiated after the refactoring [66]. This specific notion
of behavior preservation is called object equivalence. Later,
this work was extended to a special kind of graph
transformations that have the property of being language-
preserving [67]: The set of all acceptable program inputs
before and after the transformations must be the same. As
such, it provides a framework for refactoring with a
theoretical basis in formal language theory. Hwang et al.
propose another extension by using a notion of object
semiequivalence between class hierarchies, which is a direct
extension of object equivalence to take composite objects into
account [68]. They propose a set of primitive transforma-
tions that preserves object semiequivalence, is complete
(i.e., any transformation can be expressed as a sequence of
the primitive transformations), and is minimal (i.e., no
smaller set of primitive transformations can be found).

Hürsch and Seiter guarantee preservation by uncoupling
the class structure from the object behavior, using class
graphs and propagation patterns [69]. This allows them to
define a restricted set of refactorings that change the
structure without affecting the dynamic behavior.

Ward and Bennett provide a formal imperative language
WSL and associated tool that comes with a library of
program transformations that have been proven to preserve
the dynamic behavior [42]. A disadvantage of the approach
is that, if we want to apply it to some “informal”
programming language, we first have to write a translator
of this language to and fromWSL and we cannot use formal
methods to prove that this translation is correct.

For logic programming languages, there are several
notions of program semantics: least Herbrand model seman-
tics [70], set of computed answer substitutions semantics [71],
sequence of computed answer substitutions semantics [72].
Transformation rules (such as Unfold/Fold) can be applied
to restructure logic programs with the aim of improving
efficiency. For these rules, it can be theoretically shown that
they preserve program equivalence under the above notions
of semantics, given some suitable restrictions [27]. Similar
results have been obtained for functional programming
languages [29].

4.4 Other Useful Techniques and Formalisms

Many other techniques and formalisms have been proposed
and used to support restructuring and refactoring activities.
We provide a brief overview below and refer to the
literature for more detailed information.

Program slicing is a technique which extracts all state-
ments that may possibly affect a certain set of variables in a
program [47]. This technique, based on system dependence
graphs, can be used to guarantee that a restructuring
preserves some selected behavior of interest. For example, it
has been proposed to deal with a specific kind of program
restructurings: function or procedure extraction [48], [49]. A
similar, but less formal approach is presented in [50], where

an algorithm is proposed to move a selected set of nodes in
a control-flow graph together so that they become extrac-
table while preserving program semantics. Since program
slicing can be applied to object-oriented programs too [51],
it is likely that this technique can be used to deal with
program refactorings as well.

Sands developed a formal improvement theory to be able to
transform functional programs to improve their efficiency
[29]. The transformations are guaranteed to be “meaning
preserving,” which boils down to the preservation of
(global) equivalence. This is a nontrivial property since a
sequence of transformations that preserve the local equiva-
lence does not necessarily preserve (global) equivalence.
Nevertheless, Sands provides a condition to achieve such
global equivalence on recursive programs in higher-order
functional languages, including lazy data structures.

Formal concept analysis provides a conceptual tool for the
analysis of data [52]. The formalism uses lattice theory to
provide a way to group and discuss objects based upon
their common attributes. Snelting and Tip use concept
analysis to refactor object-oriented class hierarchies, based
on the “usage” of this hierarchy by a set of software systems
[53]. The result is guaranteed to be behaviorally equivalent
to the original hierarchy. Tonella uses the same technique to
restructure software modules [54]. van Deursen and
Kuipers use concept analysis to semiautomatically restruc-
ture legacy data structures into object-oriented software by
identifying object structures [55].

Program refinement encompasses a collection of formal
techniques to transform a program specification into an
executable program in a stepwise fashion. Philipps and
Rumpe [56] suggest using refinement approaches [57], [58] as
a way to formally deal with the notions of behavior,
behavioral equivalence, and behavior preservation. Ward
and Bennett illustrate how to apply refinement in the
context of program restructuring [42]. They define a
formally defined imperative language WSL that provides
three kinds of program transformations: (behavior-preser-
ving) restructurings, (behavior-extending) refinements, and
their opposite: abstractions. Refinement of dataflow architec-
tures uses a clearly defined notion of observable behavior
that allows us to precisely define what preservation and
refinement of behavior means [59].

Software metrics can be used to deal with refactorings as
well. Numerical measures can be used before applying a
refactoring, to measure the (internal or external) quality of
software, or after the refactoring, to measure improvements
of the quality. Demeyer et al. propose using change metrics
to detect refactorings between two successive software
releases [60]. Simon et al. use distance-based cohesion
metrics to detect where in a given piece of software there is
a need for refactoring [20]. Kataoka et al. use coupling
metrics to evaluate the effect of refactoring on maintain-
ability [31]. Coleman et al. use a polynomial of multiple
measures to define a maintainability index by which the
effect of refactoring can be evaluated [61].

Software visualization is another technique that can help
with software refactoring. Griswold et al. propose to use
star diagrams for this purpose [62]. Ducasse et al. propose
DupLoc, a graphical tool for detecting code duplication [16].

132 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 2, FEBRUARY 2004

Simon et al. use a generic visualization framework based on
static structure analysis and a cohesion-based distance
metric to identify pathological situations that may be
improved by applying refactorings [20]. Van Emden and
Moonen detect bad smells in Java code and visualize them
using the Rigi software visualization tool [18]. Lanza and
Ducasse propose the evolution matrix, a lightweight combi-
nation of software metrics and visualization to identify
patterns of evolution within object-oriented software [21].
Some of these patterns can be used to reveal where
refactorings have been applied in the evolution history, or
to identify places in the code that are in need of refactoring.

Dynamic program analysis is a useful technique when not
all desired preconditions of a refactoring can be statically
computed in a reasonable amount of time or with a
reasonable computation effort. For these situations, Roberts
suggests using dynamic program analysis to verify the
preconditions of a refactoring or to deal with program
invariants that cannot be specified or checked statically [41].
Runtime program information may also be used to identify
where refactorings might be desirable. Kataoka et al. do this
by dynamically inferring program invariants using the
Daikon tool [14].

5 TYPES OF SOFTWARE ARTIFACTS

Although contemporary IDEs limit support for refactoring
to the source code only, refactoring can be applied to any
type of software artifact. For example, it is possible and
useful to refactor design models, database schemas, soft-
ware architectures, and software requirements. Refactoring
of these kinds of software artifacts rids the developer of
many implementation-specific details and raises the ex-
pressive power of the changes that are made. On the other
hand, applying refactorings to different types of software
artifacts introduces the need to keep them all in sync.

5.1 Programs

Support for program restructuring and refactoring has
been provided in a variety of different programming
languages and programming paradigms. This is summar-
ized in Table 2.

Programs that are not written in an object-oriented
language are more difficult to restructure because data flow
and control flow are tightly interwoven. Because of this,
restructurings are typically limited to the level of a function
or a block of code [79], [48], [49], [50]. On the other hand, the
very nature of object-oriented principles makes some
seemingly straightforward restructurings surprisingly hard
to implement. The encountered difficulties typically have to
do with the inheritance mechanism and, more in particular,
the notions of dynamic binding, interfaces, subtyping,
overriding, and polymorphism. For example, Najjar et al.
mention the inconsistent use of super calls and the lack of
scope when using interfaces as concrete problems in the
context of program refactoring [87].

Also note that the more complex a language, the more
difficult to automate the refactoring proces is. For
example, a C or C++ program transformation tool cannot
deal with preprocessor directives because they are not
part of the actual language syntax [10], [28], [77]. This
problem is tackled by XRefactory [78], a refactoring
browser that allows one to refactor C programs in the
presence of a C preprocessor.

5.2 Designs

A recent research trend is to deal with refactoring at design
level, for example in the form of UML models [93], [37],
[94]. Boger et al. developed a refactoring browser integrated
with a UML modeling tool [95]. It supports refactoring of
class diagrams, statechart diagrams, and activity diagrams.
For each of these diagrams, the user can apply refactorings
that cannot easily or naturally be expressed in other
diagrams or in the source code. Van Gorp et al. propose a
UML extension to express the pre and postconditions of
source code refactorings using OCL [96]. The proposed
extension allows an OCL empowered CASE tool to verify
nontrivial pre and postconditions, to compose sequences of
refactorings, and to use the OCL query engine to detect bad
code smells. Such an approach is desirable as a way to
refactor designs independent of the underlying program-
ming language.

Design patterns provide a means to describe the program
structure at a high level of abstraction [12]. Often,
refactorings are used to introduce new design pattern
instances into the software [88], [90], [91]. We already
illustrated this in our running example of Section 2, where
refactorings were used to introduce a Visitor design pattern.
Design patterns also impose constraints on the software
structure, which may limit applicability of certain refactor-
ings. To detect this, Mens and Tourwé resort to logic
reasoning [109]. Jahnke and Zündorf use graph transforma-
tion techniques to restructure/replace occurrences of poor
design patterns in a legacy program by good design
patterns [97].

Object-oriented database schemas can be seen as the
predecessor of UML class diagrams. Because their main
focus is on how data should be structured, they are an ideal
candidate for refactoring. In fact, the research area of object-
oriented software refactoring originates in the research on
how to restructure object-oriented database schemas [40],
[66], [69].

MENS AND TOURW�EE: A SURVEY OF SOFTWARE REFACTORING 133

TABLE 2
Restructuring Support in Different Programming Languages

To deal with refactoring of software architectures, Philipps
and Rumpe propose a promising approach where refactor-
ing rules are based directly on the graphical representation
of a system architecture [59]. These rules preserve the
behavior specified by the causal relationship between the
components. A more pragmatic approach is presented by
Tokuda and Batory [28]: Architectural changes to two
software systems are made by performing a sequence of
primitive refactorings (81 refactorings in a first case study
and 800 refactorings in a second case study).

5.3 Software Requirements

Restructuring can also be applied at the level of require-
ments specifications. For example, Russo et al. suggest
restructuring natural language requirements specifications
by decomposing them into a structure of viewpoints [98].
Each viewpoint encapsulates partial requirements of some
system components, and interactions between these view-
points are made explicit. This restructuring approach
increases requirements understanding, and facilitates
detecting inconsistencies and managing requirements
evolution.

6 TOOL SUPPORT

Although it is possible to refactor manually, tool support is
considered crucial. Today, a wide range of tools is available
that automate various aspects of refactoring.3 In this section,
we explore the different characteristics that affect the
usability of a tool. More specifically, we discuss the notions
of automation, reliability, configurability, coverage, and
scalability of refactoring tools.

6.1 Automation

The degree of automation of a refactoring tool varies
depending on which of the refactoring activities of Section 3
are supported by the tool, as well as the extent to which
support for each of these activities is automated.

For example, contemporary IDEs often include a
refactoring browser that supports a semiautomatic approach
to refactoring. While it remains the task of the developer to
identify which part of the software needs to be refactored
and to select the most appropriate refactoring to apply, the
actual application of the refactoring is automated. As
indicated by Tokuda and Batory [28], a semiautomatic
approach can drastically increase the productivity (in terms
of coding and debugging time) when compared to refactor-
ing by hand. Based on two nontrivial case studies, they
estimate this to be a factor of 10 or more. Similarly, one can
expect developer productivity to improve after the software
has been refactored because the software generally is more
understandable, maintainable, and evolvable. Another
main advantage of refactoring tools from the viewpoint of
the developer is that their behavior-preserving nature
significantly reduces the need for debugging and testing,
two activities that are known to be very time-consuming
and labor intensive.

As an alternative to this semiautomatic approach, some
researchers demonstrated the feasibility of fully automated

refactoring. For example, Guru is a fully automated tool for
refactoring inheritance hierarchies and refactoring methods
in SELF programs [64]. Another automatic refactoring
approach is proposed by Casais [99]. Optimization techni-
ques as performed by compilers can also be considered as
fully automated refactoring techniques. While these opti-
mizing transformations are completely transparent to the
user, their goal is to improve the performance of the
program, yet preserve its behavior [100].

In many cases, automating refactoring activities gives
rise to new activities or opportunities that were not possible
without automation. For example, the added benefit of
automatically applying refactorings is that its application
can be easily undone to allow the software to return to its
original state if it turns out the refactoring did not have the
desired effect.

Compared to partial automation, fully automated re-
factoring and restructuring tools exhibit the disadvantage of
doing too much work in the sense that certain parts of the
refactored software become more difficult to understand
than before. This is confirmed by Callis who identified some
shortcomings of automatic program restructuring tools
[101]. He pointed out that interactive restructuring tools
do not have many of these shortcomings. On the other
hand, the problem with interactive restructuring tools is
that they involve a lot of human interaction when faced
with large software, making it a time-consuming activity.
Despite this problem, semiautomatic refactoring remains
the most useful approach in practice, except in specific
situations such as compiler optimization. The main reason
for this is that a significant part of the knowledge required
to perform the refactoring cannot be extracted from the
software, but remains implicit in the developer’s head.

6.2 Reliability

The reliability of a refactoring tool mainly depends on the
ability to guarantee that its provided refactoring transfor-
mations are truly behavior preserving. As we have seen in
Section 4.3, it is only possible to guarantee this in very
specific cases (e.g., for simple languages, for a limited
number of refactorings, given a clearly defined notion of
semantics). Because of these restrictions, most tools check
the refactoring preconditions before applying it and per-
form tests afterward.

In the absence of a full guarantee of behavior preserva-
tion, it is essential that a refactoring tool provides an undo
mechanism to make undesired changes undone [41].

6.3 Configurability and Openness

There is a tendency to integrate refactoring tools directly
into industrial strength IDEs. This is typically achieved
using the built-in extensibility mechanisms of these tools
(e.g., plug-ins, APIs, or wizards). Unfortunately, these
extensibility mechanisms are often inadequate for the
purpose of configuring the tools with user-specific or
domain-specific information.

There are a variety of ways in which a user (or a group or
users) should be able to configure a refactoring tool for a
particular usage:

. by adding new or removing or modifying existing
refactorings and bad smell specifications,

134 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 2, FEBRUARY 2004

3. For an extensive and up-to-date overview of refactoring tools, we refer
to http://www.refactoring.com/.

. by changing the way bad smells and refactorings are
linked [17],

. by defining composite refactorings from primitive
ones [13].

Having an open configurable tool is a necessity to allow
one to configure the above information according to the
needs in a user-friendly way. To make it easier for the user
to specify and modify refactorings, Leitão suggests to use a
pattern language (i.e., a collection of related patterns
together with rules explaining how to apply them) to
express refactorings [80]. Muñoz provides user-configur-
able threshold values to specify under which conditions a
bad smell needs to be detected [81].

6.4 Coverage

As mentioned in Section 3, there is a wide range of
refactoring activities that can be covered by a tool. An ideal
refactoring tool should be as complete as possible, i.e., it
should cover most of these activities. Unfortunately, most
commercial refactoring tools only provide support for
automatically applying refactorings, whereas the other
activities of the refactoring process are neglected.

6.5 Scalability

Contemporary software development tools only support
primitive refactorings. As illustrated in the example of
Section 2, refactoring even the simplest design already
requires applying a large number of primitive refactorings.
To increase the scalability and performance of a refactoring
tool, frequently used sequences of primitive refactorings
should be combined into composite refactorings.

The use of composite refactorings has several advan-
tages. First of all, they better capture the specific intent of
the software change induced by the refactoring. As such, it
becomes easier to understand how the software has been
refactored. Second, composite refactorings result in a
performance gain because the tool needs to check the
preconditions only once for the composite refactoring,
rather than for each primitive refactoring in the sequence
separately [41], [102]. A third advantage of composite
refactorings is that they can weaken the behavior preserva-
tion requirements of its primitive constituents. The primi-
tive refactorings in a sequence do not have to be behavior
preserving as long as the net effect of their composition is
behavior preserving. This interesting idea is referred to as
transactional refactoring by Tokuda and Batory [28]. As an
example, they show that the refactoring DelegateMethod
AcrossObjectBoundary is a sequence of two primitive
refactorings, MoveMethodAcrossObjectBoundary (which
removes the method entirely from its original class) and
CreateMethod Accessor (which reintroduces the method to
the original class and delegates its execution to the moved
method). While the net result of applying both refactorings
in sequence is behavior preserving, the primitive refactor-
ings are not. If clients of the original class reference the
target method, the enabling conditions of the move method
refactoring will prevent the method from being moved.

Similar to the use of composite refactorings, �OO Cinnéide
and Nixon [103] propose using refactorings to introduce
design patterns by first splitting up the design pattern into a
sequence of minipatterns and then applying a sequence of

corresponding minitransformations to introduce these mini-
patterns. Each minitransformation is expressed as a
composition of primitive refactorings, using sequencing
and iteration constructs [13].

Tokuda and Batory [28] also tested the scalability of
refactorings on two nontrivial evolving software systems
written in C++, a mainstream object-oriented language. The
first system consisted of 11K lines of code and the code was
refactored by executing 81 refactorings, modifying in total
486 lines of source code. The second system was modified
by executing about 800 refactorings, resulting in 14K lines of
code change. Despite these large numbers, the changes
boiled down to eight (respectively, 20) conceptual transfor-
mation steps that had to be carried out sequentially.

A final aspect of scalability has to do with change
propagation [38]. Because changes tend to propagate
throughout the software, the application of a certain
refactoring may suggest or even require other refactorings
to be applied as well in order to achieve the goal intended
by the original refactoring. Tourwé and Mens refer to this
idea as cascaded refactorings [17] and provide tool support for
it by means of logic rules that are implemented on top of an
existing object-oriented IDE in Smalltalk. Like with compo-
site refactorings, the main idea is to identify and specify
sequential dependencies between refactorings.

6.6 Language Independence

A tool or formal model for refactoring should be sufficiently
abstract to be applicable to different programming lan-
guages, but should also provide the necessary hooks to add
language-specific behavior.

Lämmel [104] introduces the notion of generic program
refactoring as an initial proposal toward a language-
parametric framework that can be instantiated for a variety
of different languages such as Java, Prolog, Haskell, and
XML. The framework is implemented in the functional
programming language Haskell and provides hot spots for
the language-specific ingredients for refactoring. The
underlying idea is that functional strategies are used to
specify reusable parse tree traversal schemes.

Meta modeling is a useful technique to make refactoring
less dependent on the implementation language. Tichelaar
et al. [105] and Mens et al. [25] both propose a metamodel-
based approach for language-independent refactoring.

Ward and Bennett suggest achieving language indepen-
dence by translating code written in some language to the
intermediate formal language WSL, where the code can be
restructured, refined, and abstracted [42]. After transforma-
tion, the modified code can be translated again to the same
language or to another language. This use of an inter-
mediate language representation makes the approach
language independent. For any new language, one only
needs to write an automatic translator to or from WSL.

Language independence is not only important between
different languages, but also if we have a language that is an
extension of another one. For example, although AspectJ is
an extension of Java, existing Java refactorings are not
always valid in AspectJ as they do not consider the impact
the modifications made by the refactoring have on the
AspectJ code. Conversely, there are also new refactorings

MENS AND TOURW�EE: A SURVEY OF SOFTWARE REFACTORING 135

that are needed to deal with the features in AspectJ that do
not occur in Java [92].

7 PROCESS SUPPORT

Refactoring is an important activity in the software
development process. In this section, we discuss how
refactoring fits into the processes of software reengineering,
agile software development, and framework-based soft-
ware development.

7.1 Software Reengineering

Refactoring naturally fits in the process of software
reengineering [9], the aim of which is to restructure legacy
software. In this process, refactoring is only the last stage
and addresses the technical issue of (semi)automatically
modifying the software to implement a new solution. The
more important problems, however, are to determine which
parts of the legacy software should be converted and
exactly how to convert them, taking into account the
constraints that reengineers are facing and the potential
impact of the suggested changes. Even trying to understand
what the legacy software does in the first place is already a
significant problem.

Unlike forward engineering that is supported by a
variety of processes such as the spiral and waterfall models
of software development, no established process for
reengineering is available. Due to the absence of such a
process, reengineering patterns are the next best thing [9].
They codify and record best practice knowledge about
modifying legacy software. They provide generic solutions
based on recurring reengineering problems that were
encountered in real-life situations. In this sense, they
provide stable units of expertise that can be consulted in
any reengineering effort.

Refactoring also seems to fit well into a model-driven
reengineering process. One of the goals of model-driven
architectures (MDA) is to facilitate platform migration by
code generation from abstract models [106]. At first sight,
this reduces the refactoring effort for platform migration
substantially. However, code generation implies forward
engineering and introduces a fixed architecture, which
typically is not present in hand-written code. Refactoring
can be applied to transform the design of existing code into
a form that can be understood by the reverse engineering
facilities of an MDA tool. More research is required to
decide which refactorings can be applied where and when
in a model-driven reengineering process and what other
techniques are complementary.

7.2 Agile Software Development

Typically, major reengineering efforts are carried out only
when the software has already degraded so much that it has
turned into legacy code. In contrast, the agile software
development community, with eXtreme Programming (XP)
as its main proponent [107], suggests supporting a culture
of continuous reengineering. They propose a process where
one develops and reengineers software in small iterations:
You develop a little (to implement the desired behavior),
reengineer a little (to improve the structure), develop a little
more, and so on. Unfortunately, these short iterative

development cycles do not seem to fit very well in a more
classical software development process.

Refactoring is one of the cornerstones in the XP process.
Many object-oriented IDEs provide considerable support
for XP, using a combination of refactoring support and unit
testing, two core activities in XP. In [23], [24], the relation-
ship between testing and refactoring is explored in more
detail to address the practical problem that refactorings
often invalidate tests. Whenever this occurs, Pipka suggests
modifying the tests first and apply the refactoring afterward
to guarantee that we can still use the tests for program
verification [23]. Van Deursen et al. [108] show that
refactoring of test code is different from refactoring
production code in two ways: 1) There is a distinct set of
bad smells involved and 2) improving test code involves
additional test-specific refactorings.

7.3 Framework-Based or Product Line Software
Development

Parallel application of refactorings often leads to un-
expected evolution conflicts [102]. This issue is particularly
relevant for object-oriented application frameworks, where
the framework may be instantiated into many different
software systems while the framework itself is also
subject to evolution. This implies that a refactoring of
the framework may lead to evolution conflicts in each of
its instantiations [102]. The same issue holds for software
families or product lines.

As an example, consider what happens when a devel-
oper extends the design of Fig. 1 by implementing a spell
checking algorithm for documents. This requires him to
define checkSpelling methods in all classes of the Document
class hierarchy, as well as a SpellChecker helper class. At the
same time, and independent of the first change, another
developer decides to refactor the design to introduce the
Visitor design pattern, as depicted in Fig. 2. Both changes
need to be combined into a single design that includes both
the Visitor design pattern and the spell checking algorithm.
We cannot simply merge both evolutions as this would lead
to an inconsistent design: The print and preview algorithms
would use the Visitor design pattern, whereas the spell
checking algorithm does not. Tourwé and Mens [109]
propose logic metaprogramming as a way to detect and
resolve such problems.

8 CONCLUSIONS

This paper provides an extensive overview of existing
research in the domain of software refactoring and software
restructuring. We classified this research according to five
different criteria: the refactoring activities that are sup-
ported, the specific techniques and formalisms that are used
to support these activities, the kinds of software artifacts
that are being refactored, the important characteristics that
need to be taken into account when building refactoring
tools, and the effect of refactoring on the software
development process. In each of these categories, we
indicated important open issues that remain to be solved.
In general, we identified a need for formalisms, processes,
methods, and tools that address refactoring in a more
consistent, generic, scalable, and flexible way. Although

136 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 2, FEBRUARY 2004

commercial refactoring tools have begun to proliferate,

research into software restructuring and refactoring con-

tinues to be very active and remains essential to revealing

and addressing the shortcomings of these tools.

ACKNOWLEDGMENTS

This research was funded by the FWO Project G.0452.03 “A

formal foundation for software refactoring” and was carried

out in the context of the scientific networks “Formal

Foundations of Software Evolution” and “Research Links

to Explore and Advance Software Evolution” financed by

the Fund for Scientific Research—Flanders and the Eur-

opean Science Foundation, respectively. We thank Jean-

Marc Jézéquel and the anonymous reviewers for their

excellent reviews that turned this paper into a far better

paper than it would have been otherwise.

REFERENCES

[1] D.M. Coleman, D. Ash, B. Lowther, and P.W. Oman, “Using
Metrics to Evaluate Software System Maintainability,” Computer,
vol. 27, no. 8, pp. 44-49, Aug. 1994.

[2] T. Guimaraes, “Managing Application Program Maintenance
Expenditure,” Comm. ACM, vol. 26, no. 10, pp. 739-746, 1983.

[3] B.P. Lientz and E.B. Swanson, Software Maintenance Management: A
Study of the Maintenance of Computer Application Software in 487
Data Processing Organizations. Addison-Wesley, 1980.

[4] R.L. Glass, “Maintenance: Less Is Not More,” IEEE Software, July/
Aug. 1998.

[5] R.S. Arnold, “An Introduction to Software Restructuring,” Tutorial
on Software Restructuring, R.S. Arnold, ed., 1986.

[6] W.F. Opdyke, “Refactoring: A Program Restructuring Aid in
Designing Object-Oriented Application Frameworks,” PhD thesis,
Univ. of Illinois at Urbana-Champaign, 1992.

[7] M. Fowler, Refactoring: Improving the Design of Existing Programs.
Addison-Wesley, 1999.

[8] E.J. Chikofsky and J.H. Cross, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17,
1990.

[9] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented
Reengineering Patterns. Morgan Kaufmann and DPunkt, 2002.

[10] R. Fanta and V. Rajlich, “Reengineering Object-Oriented Code,”
Proc. Int’l Conf. Software Maintenance, pp. 238-246, 1998.

[11] R. Fanta and V. Rajlich, “Restructuring Legacy C Code into C++,”
Proc. Int’l Conf. Software Maintenance, pp. 77-85, 1999.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Languages and Systems.
Addison-Wesley, 1994.

[13] M. �OO Cinnéide and P. Nixon, “Composite Refactorings for Java
Programs,” technical report, Dept. of Computer Science, Univ.
College Dublin, 2000.

[14] Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin, “Auto-
mated Support for Program Refactoring Using Invariants,” Proc.
Int’l Conf. Software Maintenance, pp. 736-743, 2001.

[15] M. Balazinska, E. Merlo, M. Dagenais, and B. Lagüe, and K.
Kontogiannis, “Advanced Clone-Analysis to Support Object-
Oriented System Refactoring,” Proc. Working Conf. Reverse Eng.,
pp. 98-107, 2000.

[16] S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent
Approach for Detecting Duplicated Code,” Proc. Int’l Conf.
Software Maintenance, pp. 109-118, 1999.

[17] T. Tourwé and T. Mens, “Identifying Refactoring Opportunities
Using Logic Meta Programming,” Proc. European Conf. Software
Maintenance and Reeng., pp. 91-100, 2003.

[18] E. van Emden and L. Moonen, “Java Quality Assurance by
Detecting Code Smells,” Proc. Working Conf. Reverse Eng., pp. 97-
108, 2002.

[19] T. Dudziak and J. Wloka, “Tool-Supported Discovery and
Refactoring of Structural Weaknesses in Code,” MS thesis, Faculty
of Computer Science, Technical Univ. of Berlin, Feb. 2002.

[20] F. Simon, F. Steinbrückner, and C. Lewerentz, “Metrics Based
Refactoring,” Proc. European Conf. Software Maintenance and Reeng.,
pp. 30-38, 2001.

[21] M. Lanza and S. Ducasse, “Understanding Software Evolution
Using a Combination of Software Visualization and Software
Metrics,” Proc. Langages et Modèles à Objets, pp. 135-149, Aug. 2002.

[22] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns. Sun
Microsystems Press, 2001.

[23] J.U. Pipka, “Refactoring in a ‘Test First’-World,” Proc. Third Int’l
Conf. eXtreme Programming and Flexible Processes in Software Eng.,
2002.

[24] A. van Deursen and L. Moonen, “The Video Store Revisited
—Thoughts on Refactoring and Testing,” Proc. Third Int’l Conf.
eXtreme Programming and Flexible Processes in Software Eng., pp. 71-
76, 2002.

[25] T. Mens, S. Demeyer, and D. Janssens, “Formalising Behavior
Preserving Program Transformations,” Graph Transformation, 2002.

[26] F. Tip, A. Kiezun, and D. Bäumer, “Refactoring for Generalization
Using Type Constraints,” Proc. SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pp. 13-26, 2003.

[27] M. Proietti and A. Pettorossi, “Semantics Preserving Transforma-
tion Rules for Prolog,” Proc. Symp. Partial Evaluation and Semantics-
Based Program Evaluation, vol. 26, no. 9, pp. 274-284, May 1991.

[28] L. Tokuda and D.S. Batory, “Evolving Object-Oriented Designs
with Refactorings,” Automated Software Eng., vol. 8, no. 1, pp. 89-
120, 2001.

[29] D. Sands, “Total Correctness by Local Improvement in the
Transformation of Functional Programs,” Trans. Programming
Languages and Systems, vol. 18, no. 2, pp. 175-234, Mar. 1996.

[30] S. Demeyer, “Maintainability versus Performance: What’s the
Effect of Introducing Polymorphism?” technical report, Lab. on
Reeng., Universiteit Antwerpen, Belgium, 2002.

[31] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A Quantitative
Evaluation of Maintainability Enhancement by Refactoring,” Proc.
Int’l Conf. Software Maintenance, pp. 576-585, Oct. 2002.

[32] L. Tahvildari and K. Kontogiannis, “A Methodology for Devel-
oping Transformations Using the Maintainability Soft-Goal
Graph,” Proc. Working Conf. Reverse Eng., pp. 77-86, Oct. 2002.

[33] L. Tahvildari and K. Kontogiannis, “A Metric-Based Approach to
Enhance Design Quality through Meta-Pattern Transformations,”
Proc. European Conf. Software Maintenance and Reeng., pp. 183-192,
2003.

[34] J. Grundy, J. Hosking, and W. Mugridge, “Inconsistency Manage-
ment for Multiple-View Software Development Environments,”
IEEE Trans. Software Eng., vol. 24, no. 11, pp. 960-981, Nov. 1998.

[35] B. Nuseibeh, S. Easterbrook, and A. Russo, “Leveraging Incon-
sistency in Software Development,” Computer, vol. 33, no. 4, pp. 24-
29, Apr. 2000.

[36] G. Spanoudakis and A. Zisman, “Inconsistency Management in
Software Engineering: Survey and Open Research Issues,” Hand-
book of Software Eng. and Knowledge Eng., vol. 1, pp. 24-29, 2001.

[37] P. Bottoni, F. Parisi-Presicce, and G. Taentzer, “Coordinated
Distributed Diagram Transformation for Software Evolution,”
Electronic Notes in Theoretical Computer Science, vol. 72, no. 4, 2002.

[38] V. Rajlich, “A Model for Change Propagation Based on Graph
Rewriting,” Proc. Int’l Conf. Software Maintenance, pp. 84-91, 1997.

[39] R. Van Der Straeten, J. Simmonds, T. Mens, and V. Jonckers,
“Using Description Logic to Maintain Consistency between UML
Models,” Proc. Unified Modeling Language Conf. 2003, 2003.

[40] J. Banerjee and W. Kim, “Semantics and Implementation of
Schema Evolution in Object-Oriented Databases,” Proc. SIGMOD
Conf., 1987.

[41] D. Roberts, “Practical Analysis for Refactoring,” PhD thesis, Univ.
of Illinois at Urbana-Champaign, 1999.

[42] M.P. Ward and K.H. Bennett, “Formal Methods to Aid the
Evolution of Software,” Int’l J. Software Eng. and Knowledge Eng.,
vol. 5, no. 1, pp. 25-47, 1995.

[43] R. Heckel, “Algebraic Graph Transformations with Application
Conditions,” MS thesis, TU Berlin, 1995.

[44] D. Roberts, J. Brant, and R.E. Johnson, “A Refactoring Tool for
Smalltalk,” Theory and Practice of Object Systems, vol. 3, no. 4,
pp. 253-263, 1997.

[45] A. Habel, R. Heckel, and G. Täntzer, “Graph Grammars with
Negative Application Conditions,” Fundamenta Informaticae,
vol. 26, nos. 3 and 4, pp. 287-313, June 1996.

[46] N. Van Eetvelde and D. Janssens, “A Hierarchical Program
Representation for Refactoring,” Proc. UniGra’03 Workshop, 2003.

MENS AND TOURW�EE: A SURVEY OF SOFTWARE REFACTORING 137

[47] M. Weiser, “Program Slicing,” IEEE Trans. Software Eng., vol. 10,
no. 4, pp. 352-357, 1984.

[48] F. Lanubile and G. Visaggio, “Extracting Reusable Functions by
Flow Graph-Based Program Slicing,” IEEE Trans. Software Eng.,
vol. 23, no. 4, pp. 246-258, Apr. 1997.

[49] A. Lakhotia and J.-C. Deprez, “Restructuring Programs by
Tucking Statements into Functions,” Information and Software
Technology, special issue on program slicing, vol. 40, pp. 677-689,
1998.

[50] R. Komondoor and S. Horwitz, “Semantics-Preserving Procedure
Extraction,” technical report, Computer Sciences Dept., Univ. of
Wisconsin-Madison, 2000.

[51] L. Larsen and M.J. Harrold, “Slicing Object-Oriented Software,”
Proc. Int’l Conf. Software Eng., pp. 495-505, Mar. 1996.

[52] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag, 1999.

[53] G. Snelting and F. Tip, “Reengineering Class Hierarchies Using
Concept Analysis,” Proc. Foundations of Software Eng., pp. 99-110,
1998.

[54] P. Tonella, “Concept Analysis for Module Restructuring,” Trans.
Software Eng., vol. 27, no. 4, pp. 351-363, Apr. 2001.

[55] A. van Deursen and T. Kuipers, “Identifying Objects Using
Cluster and Concept Analysis,” Proc. 21st Int’l Conf. Software Eng.,
pp. 246-255, 1999.

[56] J. Philipps and B. Rumpe, “Roots of Refactoring,” Proc. 10th
OOPSLA Workshop Behavioral Semantics, 2001.

[57] N. Wirth, “Program Development by Stepwise Refinement,”
Comm. ACM, vol. 14, pp. 221-227, 1971.

[58] R.-J. Back, “Correctness Preserving Program Refinements,”
technical report, Math. Centre Tracts #131, Mathematisch Cen-
trum Amsterdam, 1980.

[59] J. Philipps and B. Rumpe, “Refinement of Information Flow
Architectures,” Proc. Int’l Conf. Formal Eng. Methods, 1997.

[60] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding Refactorings
via Change Metrics,” Proc. Object-Oriented Programming, Systems,
Languages, Applications Conf. 2000, vol. 35, no. 10, pp. 166-177, Oct.
2000.

[61] D. Coleman, P. Arnold, S. Bdoff, H. Gilchrist, F. Hayes, and P.
Jeremaes, Object-Oriented Development: The Fusion Method. Prentice
Hall, 1994.

[62] W.G. Griswold, M.I. Chen, R.W. Bowdidge, and J.D. Morgentha-
ler, “Tool Support for Planning the Restructuring of Data
Abstractions in Large Systems,” Proc. SIGSOFT Symp. Foundations
of Software Eng., Oct. 1996.

[63] D. Gupta, P. Jalote, and G. Barua, “A Formal Framework for On-
Line Software Version Change,” IEEE Trans. Software Eng., vol. 22,
no. 2, pp. 120-131, Feb. 1996.

[64] I. Moore, “Automatic Inheritance Hierarchy Restructuring and
Method Refactoring,” Proc. Object-Oriented Programming, Systems,
Languages, Applications Conf., pp. 235-250, 1996.

[65] R.E. Mortimer and K.H. Bennett, “Maintenance and Abstraction of
Program Data Using Formal Transformations,” Proc. Int’l Conf.
Software Maintenance, pp. 301-311, 1996.

[66] P.L. Bergstein, “Object-Preserving Class Transformations,”
SIGPLAN Notices, vol. 26, no. 11, pp. 299-313, Nov. 1991.

[67] P.L. Bergstein, “Maintenance of Object-Oriented Systems during
Structural Evolution,” Theory and Practice of Object Systems, vol. 3,
no. 3, pp. 185-212, 1991.

[68] S.H. Hwang, Y. Tsujino, and N. Tokura, “A Reorganization
Framework of the Object-Oriented Class Hierarchy,” Proc. Asia
Pacific Conf. Software Eng., pp. 117-126, 1995.

[69] W.L. Hürsch and L.M. Seiter, “Automating the Evolution of
Object-Oriented Systems,” Proc. Symp. Object Technology for
Advanced Software, pp. 2-21, 1996.

[70] H. Tamaki and T. Sato, “Unfold/Fold Transformation of Logic
Programs,” Proc. Int’l Conf. Logic Programming, pp. 127-138, 1984.

[71] T. Kawamura and T. Kanamori, “Preservation of Stronger
Equivalence in Unfold/Fold Logic Program Transformation,”
Proc. Int’l Conf. Fifth Generation Computer Systems, pp. 413-422,
1988.

[72] N. Jones and A. Mycroft, “Stepwise Development of Operational
and Denotational Semantics for Prolog,” Proc. Int’l Symp. Logic
Programming, pp. 289-298, 1984.

[73] F. Bodin, “Sage++: An Object-Oriented Toolkit and Class Library
for Building Fortran and C++ Restructuring Tools,” Proc. Conf.
Object-Oriented Numerics, 1994.

[74] C.T.H. Everaars, F. Arbab, and F.J. Burger, “Restructuring
Sequential Fortran Code into a Parallel/Distributed Application,”
Proc. Int’l Conf. Software Maintenance, pp. 13-22, 1996.

[75] J.C. Miller and B.M. Strauss, “Implications of Automatic Restruc-
turing of Cobol,” SIGPLAN Notices, vol. 22, pp. 76-82, June 1987.

[76] T.J. Harmer, P.J. McParland, and J.M. Boyle, “Using Knowledge-
Based Transformations to Reverse-Engineer COBOL Programs,”
Proc. Conf. Knowledge Based Software Eng., pp. 114-123, 1996.

[77] A. Garrido and R. Johnson, “Challenges of Refactoring C
Programs,” Proc. Int’l Workshop Principles of Software Evolution,
2002.

[78] M. Vittek, “Refactoring Browser with Preprocessor,” Proc.
European Conf. Software Maintenance and Reeng., pp. 101-110, 2003.

[79] W.G. Griswold and D. Notkin, “Automated Assistance for
Program Restructuring,” Trans. Software Eng. and Methodology,
vol. 2, no. 3, pp. 228-269, July 1993.

[80] A.M. Leitão, “A Formal Pattern Language for Refactoring of Lisp
Programs,” Proc. European Conf. Software Maintenance and Reeng.,
pp. 186-192, 2002.

[81] F. Muñoz, “A Logic Metaprogramming Framework for Support-
ing the Refactoring Process,” MS thesis, Vrije Universiteit Brussel,
Sept. 2003.

[82] R. Lämmel, “Reuse by Program Transformation,” Functional
Programming Trends, 1999.

[83] H. Li, S. Thompson, and C. Reinke, “Tool Support for Refactoring
Functional Programs,” Proc. SIGPLANWorkshop Haskell, pp. 27-38,
2003.

[84] A. Pettorossi and M. Proietti, “Rules and Strategies for Transform-
ing Functional and Logic Programs,” ACM Computing Surveys,
vol. 28, no. 2, pp. 360-414, June 1996.

[85] A. Power and L. Sterling, “A Notion of Map between Logic
Programs,” Proc. Int’l Conf. Logic Programming, pp. 390-404, 1990.

[86] J. Farrell, “Make Bad Code Good—Refactor Broken Java Code for
Fun and Profit,” JavaWorld, Mar. 2001.

[87] R. Najjar, S. Counsell, G. Loizou, and K. Mannock, “The Role of
Constructors in the Context of Refactoring Large-Scale Object-
Oriented Systems,” Proc. European Conf. Software Maintenance and
Reeng., pp. 111-122, 2003.

[88] T. Genssler, B. Mohr, B. Schulz, and W. Zimmer, “On the
Computer Aided Introduction of Design Patterns into Object-
Oriented Systems,” Proc. TOOLS Conf., 1998.

[89] W.F. Opdyke, “Refactoring C++ Programs,” technical report,
Lucent Technologies/Bell Labs, 1999.

[90] W. Scherlis, “Systematic Change of Data Representation: Program
Manipulations and Case Study,” Proc. European Symp. Program-
ming, 1998.

[91] L. Tokuda and D.S. Batory, “Automated Software Evolution via
Design Pattern Transformations,” Proc. Int’l Symp. Applied
Corporate Computing, Oct. 1995.

[92] P. Borba and S. Soares, “Refactoring and Code Generation Tools
for AspectJ,” Proc. OOPSLA 2002 Workshop Tools for Aspect-
Oriented Software Development, Nov. 2002.

[93] D. Astels, “Refactoring with UML,” Proc. Int’l Conf. eXtreme
Programming and Flexible Processes in Software Eng., pp. 67-70, 2002.

[94] G. Sunyé, D. Pollet, Y. LeTraon, and J.-M. Jézéquell, “Refactoring
UML Models,” Proc. Unified Modeling Language Conf. 2001, 2001.

[95] M. Boger, T. Sturm, and P. Fragemann, “Refactoring Browser for
UML,” Proc. Int’l Conf. eXtreme Programming and Flexible Processes
in Software Eng., pp. 77-81, 2002.

[96] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer, “Towards
Automating Source Consistent UML Refactorings,” Proc. Unified
Modeling Language Conf., 2003.

[97] J.H. Jahnke and A. Zündorf, “Rewriting Poor Design Patterns by
Good Design Patterns,” Proc. ESEC/FSE ’97 Workshop Object-
Oriented Reeng., 1997.

[98] A. Russo, B. Nuseibeh, and J. Kramer, “Restructuring Require-
ments Specifications for Managing Inconsistency and Change: A
Case Study,” Proc. Int’l Conf. Requirements Eng., pp. 51-61, 1998.

[99] E. Casais, “Automatic Reorganization of Object-Oriented Hier-
archies: A Case Study,” Object Oriented Systems, vol. 1, pp. 95-115,
1994.

[100] T. Tourwé and W. De Meuter, “Optimizing Object-Oriented
Languages through Architectural Transformations,” Proc. Int’l
Conf. Compiler Construction, 1999.

[101] F.W. Callis, “Problems with Automatic Restructurers,” SIGPLAN
Notices, vol. 23, pp. 13-21, Mar. 1988.

138 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 2, FEBRUARY 2004

[102] T. Mens, “A Formal Foundation for Object-Oriented Software
Evolution,” PhD thesis, Dept. of Computer Science, Vrije
Universiteit Brussel, Belgium, Sept. 1999.

[103]M. �OO Cinnéide and P. Nixon, “A Methodology for the Automated
Introduction of Design Patterns,” Proc. Int’l Conf. Software
Maintenance, pp. 463-474, 1999.

[104] R. Lämmel, “Towards Generic Refactoring,” Proc. SIGPLAN
Workshop Rule-Based Programming, 2002.

[105] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A Meta-
Model for Language-Independent Refactoring,” Proc. Int’l Symp.
Principles of Software Evolution, pp. 157-169, 2000.

[106] C. Atkinson and T. Kühne, “The Role of Meta-Modeling in MDA,”
Proc. UML 2002 Workshop Software Model Eng., pp. 67-70, Oct. 2002.

[107]K. Beck, Extreme Programming Explained: Embrace Change. Addison
Wesley, 2000.

[108]A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok,
“Refactoring Test Code,” Extreme Programming Perspectives,
M. Marchesi, ed., pp. 92-95, 2001.

[109] T. Mens and T. Tourwé, “A Declarative Evolution Framework for
Object-Oriented Design Patterns,” Proc. Int’l Conf. Software
Maintenance, pp. 570-579, 2001.

[110] P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F.
Rossi, Handbook of Graph Grammars and Graph Transformation,
pp. 107-188, World Scientific, 1999.

[111] R. Heckel, J.M. Küster, and G. Taentzer, “Confluence of Typed
Attributed Graph Transformation Systems,” Graph Transformation,
2002.

Tom Mens received the Licentiate degree in
mathematics in 1992, Advanced Masters degree
in computer science in 1993, and PhD degree in
science in 1999 at the Vrije Universiteit Brussel.
He has been a teaching and research assistant,
a research councellor for industrial research
projects and a postdoctoral fellow of the Fund for
Scientific Research Flanders (FWO). Since
October 2003, he has been lecturing on software
engineering and programming languages at the

Université de Mons-Hainaut. He has published numerous peer-reviewed
articles on the topic of software evolution, and has been a co-organizer,
program committee member, and referee of many international work-
shops and conferences. He is a cofounder and coordinator of two
international scientific research networks on software evolution,
financed by the FWO and the European Science Foundation,
respectively. He is a copromotor of a FWO interuniversity research
project on software refactoring. He is a member of both the IEEE and the
IEEE Computer Society.

Tom Tourwé received the degrees of Licentiate
in computer science in 1997 and PhD in science
in 2002 from the Vrije Universiteit Brussel. Since
February 2002, he has been associated with the
Department of Computer Science at the Vrije
Universiteit Brussels as a postdoctoral research
assistant. His research interests focus on
advanced techniques to assess and improve
the design quality of software in an automated
way. He has published several peer-reviewed

articles on this topic in international conferences and workshops. He is
also involved as a research coordinator in two industrial research
projects.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MENS AND TOURW�EE: A SURVEY OF SOFTWARE REFACTORING 139

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

