Introduction

• Range of technologies
 — Fast and Gigabit Ethernet
 — Fibre Channel
 — High Speed Wireless LANs
Why High Speed LANs?

- Office LANs used to provide basic connectivity
 - Connecting PCs and terminals to mainframes and midrange systems that ran corporate applications
 - Providing workgroup connectivity at departmental level
 - Traffic patterns light
 - Emphasis on file transfer and electronic mail
- Speed and power of PCs has risen
 - Graphics-intensive applications and GUIs
- MIS organizations recognize LANs as essential
 - Began with client/server computing
 - Now dominant architecture in business environment
 - Intranetworks
 - Frequent transfer of large volumes of data

Applications Requiring High Speed LANs

- Centralized server farms
 - User needs to draw huge amounts of data from multiple centralized servers
 - E.g. Color publishing
 - Servers contain tens of gigabytes of image data
 - Downloaded to imaging workstations
- Power workgroups
- Small number of cooperating users
 - Draw massive data files across network
 - E.g. Software development group testing new software version or computer-aided design (CAD) running simulations
- High-speed local backbone
 - Processing demand grows
 - LANs proliferate at site
 - High-speed interconnection is necessary
Ethernet (CSMA/CD)

- Carriers Sense Multiple Access with Collision Detection
- Xerox - Ethernet
- IEEE 802.3

IEEE802.3 Medium Access Control

- Random Access
 - Stations access medium randomly
- Contention
 - Stations content for time on medium
ALOHA

- Packet Radio
- When station has frame, it sends
- Station listens (for max round trip time) plus small increment
- If ACK, fine. If not, retransmit
- If no ACK after repeated transmissions, give up
- Frame check sequence (as in HDLC)
- If frame OK and address matches receiver, send ACK
- Frame may be damaged by noise or by another station transmitting at the same time (collision)
- Any overlap of frames causes collision
- Max utilization 18%

Slotted ALOHA

- Time in uniform slots equal to frame transmission time
- Need central clock (or other sync mechanism)
- Transmission begins at slot boundary
- Frames either miss or overlap totally
- Max utilization 37%
CSMA

• Propagation time is much less than transmission time
• All stations know that a transmission has started almost immediately
• First listen for clear medium (carrier sense)
• If medium idle, transmit
• If two stations start at the same instant, collision
• Wait reasonable time (round trip plus ACK contention)
• No ACK then retransmit
• Max utilization depends on propagation time (medium length) and frame length
 — Longer frame and shorter propagation gives better utilization

Nonpersistent CSMA

1. If medium is idle, transmit; otherwise, go to 2
2. If medium is busy, wait amount of time drawn from probability distribution (retransmission delay) and repeat 1
• Random delays reduces probability of collisions
 — Consider two stations become ready to transmit at same time
 • While another transmission is in progress
 — If both stations delay same time before retrying, both will attempt to transmit at same time
• Capacity is wasted because medium will remain idle following end of transmission
 — Even if one or more stations waiting
• Nonpersistent stations deferential
1-persistent CSMA

- To avoid idle channel time, 1-persistent protocol used
- Station wishing to transmit listens and obeys following:
 1. If medium idle, transmit; otherwise, go to step 2
 2. If medium busy, listen until idle; then transmit immediately
- 1-persistent stations selfish
- If two or more stations waiting, collision guaranteed
 — Gets sorted out after collision

P-persistent CSMA

- Compromise that attempts to reduce collisions
 — Like nonpersistent
- And reduce idle time
 — Like 1-persistent
- Rules:
 1. If medium idle, transmit with probability p, and delay one time unit with probability $(1 - p)$
 — Time unit typically maximum propagation delay
 2. If medium busy, listen until idle and repeat step 1
 3. If transmission is delayed one time unit, repeat step 1
- What is an effective value of p?
Value of p?

- Avoid instability under heavy load
- n stations waiting to send
- End of transmission, expected number of stations attempting to transmit is number of stations ready times probability of transmitting
 - np
- If np > 1 on average there will be a collision
- Repeated attempts to transmit almost guaranteeing more collisions
- Retries compete with new transmissions
- Eventually, all stations trying to send
 - Continuous collisions; zero throughput
- So np < 1 for expected peaks of n
- If heavy load expected, p small
- However, as p made smaller, stations wait longer
- At low loads, this gives very long delays

CSMA/CD

- With CSMA, collision occupies medium for duration of transmission
- Stations listen whilst transmitting

1. If medium idle, transmit, otherwise, step 2
2. If busy, listen for idle, then transmit
3. If collision detected, jam then cease transmission
4. After jam, wait random time then start from step 1
CSMA/CD Operation

Which Persistence Algorithm?

- IEEE 802.3 uses 1-persistent
- Both nonpersistent and p-persistent have performance problems
- 1-persistent (p = 1) seems more unstable than p-persistent
 - Greed of the stations
 - But wasted time due to collisions is short (if frames long relative to propagation delay)
 - With random backoff, unlikely to collide on next tries
 - To ensure backoff maintains stability, IEEE 802.3 and Ethernet use binary exponential backoff
Binary Exponential Backoff

- Attempt to transmit repeatedly if repeated collisions
- First 10 attempts, mean value of random delay doubled
- Value then remains same for 6 further attempts
- After 16 unsuccessful attempts, station gives up and reports error
- As congestion increases, stations back off by larger amounts to reduce the probability of collision.
- 1-persistent algorithm with binary exponential backoff efficient over wide range of loads
 - Low loads, 1-persistence guarantees station can seize channel once idle
 - High loads, at least as stable as other techniques
- Backoff algorithm gives last-in, first-out effect
- Stations with few collisions transmit first

Collision Detection

- On baseband bus, collision produces much higher signal voltage than signal
- Collision detected if cable signal greater than single station signal
- Signal attenuated over distance
- Limit distance to 500m (10Base5) or 200m (10Base2)
- For twisted pair (star-topology) activity on more than one port is collision
- Special collision presence signal
IEEE 802.3 Frame Format

<table>
<thead>
<tr>
<th>7 octets</th>
<th>1</th>
<th>6</th>
<th>6</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>SFD</td>
<td>DA</td>
<td>SA</td>
<td>Length</td>
<td>LLC Data</td>
<td>Pad</td>
<td>FCS</td>
</tr>
</tbody>
</table>

- **SFD** = Start of frame delimiter
- **DA** = Destination address
- **SA** = Source address
- **FCS** = Frame check sequence

Ethernet Standards

- 10-Mbps (Ethernet)
- 100-Mbps (Fast Ethernet)
- Gigabit Ethernet
- 10-Gbps Ethernet
10-Mbps Specification (Ethernet)

- `<data rate>`<Signaling method>`<Max segment length>`

<table>
<thead>
<tr>
<th></th>
<th>10Base5</th>
<th>10Base2</th>
<th>10Base-T</th>
<th>10Base-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Coaxial</td>
<td>Coaxial</td>
<td>UTP</td>
<td>850nm fiber</td>
</tr>
<tr>
<td>Signaling</td>
<td>Baseband</td>
<td>Baseband</td>
<td>Baseband</td>
<td>Manchester</td>
</tr>
<tr>
<td>Topology</td>
<td>Bus</td>
<td>Bus</td>
<td>Star</td>
<td>Star</td>
</tr>
<tr>
<td>Nodes</td>
<td>100</td>
<td>30</td>
<td>-</td>
<td>33</td>
</tr>
</tbody>
</table>

100-Mbps (Fast Ethernet)

<table>
<thead>
<tr>
<th></th>
<th>100Base-TX</th>
<th>100Base-FX</th>
<th>100Base-T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 pair, STP</td>
<td>2 pair, Cat 5 UTP</td>
<td>2 optical fiber</td>
<td>4 pair, cat 3,4,5</td>
</tr>
<tr>
<td>MLT-3</td>
<td>MLT-3</td>
<td>4B5B,NRZI</td>
<td>8B6T,NRZ</td>
</tr>
</tbody>
</table>
100BASE-T Options

Full Duplex Operation

- Traditional Ethernet half duplex
 - Either transmit or receive but not both simultaneously
- With full-duplex, station can transmit and receive simultaneously
- 100-Mbps Ethernet in full-duplex mode, theoretical transfer rate 200 Mbps
- Attached stations must have full-duplex adapter cards
- Must use switching hub
 - Each station constitutes separate collision domain
 - In fact, no collisions
 - CSMA/CD algorithm no longer needed
 - 802.3 MAC frame format used
 - Attached stations can continue CSMA/CD
Mixed Configurations

- Fast Ethernet supports mixture of existing 10-Mbps LANs and newer 100-Mbps LANs
- E.g. 100-Mbps backbone LAN to support 10-Mbps hubs
 - Stations attach to 10-Mbps hubs using 10BASE-T
 - Hubs connected to switching hubs using 100BASE-T
 - Support 10-Mbps and 100-Mbps
 - High-capacity workstations and servers attach directly to 10/100 switches
 - Switches connected to 100-Mbps hubs using 100-Mbps links
 - 100-Mbps hubs provide building backbone
 - Connected to router providing connection to WAN

Gigabit Ethernet Configuration

![Gigabit Ethernet Configuration Diagram]
Gigabit Ethernet - Differences

- Carrier extension
- At least 4096 bit-times long (512 for 10/100)
- Frame bursting

Gigabit Ethernet – Physical

- 1000Base-SX
 - Short wavelength, multimode fiber
- 1000Base-LX
 - Long wavelength, Multi or single mode fiber
- 1000Base-CX
 - Copper jumpers <25m, shielded twisted pair
- 1000Base-T
 - 4 pairs, cat 5 UTP

- Signaling - 8B/10B
10-Gbps Ethernet - Uses

- High-speed, local backbone interconnection between large-capacity switches
- Server farm
- Campus wide connectivity
- Enables Internet service providers (ISPs) and network service providers (NSPs) to create very high-speed links at very low cost
- Allows construction of (MANs) and WANs
 - Connect geographically dispersed LANs between campuses or points of presence (PoPs)
- Ethernet competes with ATM and other WAN technologies
- 10-Gbps Ethernet provides substantial value over ATM
10Gbps Ethernet - Advantages

- No expensive, bandwidth-consuming conversion between Ethernet packets and ATM cells
- Network is Ethernet, end to end
- IP and Ethernet together offers QoS and traffic policing approach ATM
- Advanced traffic engineering technologies available to users and providers
- Variety of standard optical interfaces (wavelengths and link distances) specified for 10 Gb Ethernet
- Optimizing operation and cost for LAN, MAN, or WAN

10Gbps Ethernet - Advantages

- Maximum link distances cover 300 m to 40 km
- Full-duplex mode only
- 10GBASE-S (short):
 - 850 nm on multimode fiber
 - Up to 300 m
- 10GBASE-L (long)
 - 1310 nm on single-mode fiber
 - Up to 10 km
- 10GBASE-E (extended)
 - 1550 nm on single-mode fiber
 - Up to 40 km
- 10GBASE-LX4:
 - 1310 nm on single-mode or multimode fiber
 - Up to 10 km
 - Wavelength-division multiplexing (WDM) bit stream across four light waves

11/22/2007 11:44 AM
Token Ring (802.5)

- Developed from IBM's commercial token ring
- Because of IBM's presence, token ring has gained broad acceptance
- Never achieved popularity of Ethernet
- Currently, large installed base of token ring products
- Market share likely to decline
Ring Operation

- Each repeater connects to two others via unidirectional transmission links
- Single closed path
- Data transferred bit by bit from one repeater to the next
- Repeater regenerates and retransmits each bit
- Repeater performs data insertion, data reception, data removal
- Repeater acts as attachment point
- Packet removed by transmitter after one trip round ring

Listen State Functions

- Scan passing bit stream for patterns
 - Address of attached station
 - Token permission to transmit
- Copy incoming bit and send to attached station
 - Whilst forwarding each bit
- Modify bit as it passes
 - e.g. to indicate a packet has been copied (ACK)
Transmit State Functions

• Station has data
• Repeater has permission
• May receive incoming bits
 — If ring bit length shorter than packet
 • Pass back to station for checking (ACK)
 — May be more than one packet on ring
 • Buffer for retransmission later

Bypass State

• Signals propagate past repeater with no delay (other than propagation delay)
• Partial solution to reliability problem (see later)
• Improved performance
Ring Repeater States

1. **Listen state**
 - Small frame (token) circulates when idle
 - Station waits for token
 - Changes one bit in token to make it SOF for data frame
 - Append rest of data frame
 - Frame makes round trip and is absorbed by transmitting station

2. **Transmit state**
 - Station then inserts new token when transmission has finished and leading edge of returning frame arrives

3. **Bypass state**

802.5 MAC Protocol

- Small frame (token) circulates when idle
- Station waits for token
- Changes one bit in token to make it SOF for data frame
- Append rest of data frame
- Frame makes round trip and is absorbed by transmitting station
- Station then inserts new token when transmission has finished and leading edge of returning frame arrives
- Under light loads, some inefficiency
- Under heavy loads, round robin
Token Ring Operation

1. Central hub
2. Acts as switch
3. Full duplex point to point link
4. Concentrator acts as frame level repeater
5. No token passing

Dedicated Token Ring

- Central hub
- Acts as switch
- Full duplex point to point link
- Concentrator acts as frame level repeater
- No token passing
802.5 Physical Layer

- Data Rate 4 16 100
- Medium UTP, STP, Fiber
- Signaling Differential Manchester
- Max Frame 4550 18200 18200
- Access Control TP or DTR TP or DTR DTR

- Note: 1Gbit specified in 2001
 - Uses 802.3 physical layer specification

Reading

- Chapter 16, Stallings’ book