
Informal Semantics

This, our last set of notes, is on informal semantics.† In particular we are
interested in using the soundness theorem of predicate calculus to construct
“counterexamples”.

Central to all this is the concept of interpretation. Until now we treated
formulas as “meaningless strings of symbols” which we knew how to manipulate
with our logical rules of inference.

But what do all these symbols mean?

1. Interpretations

We do an interpretation of a formula in the following steps:

(1) Choose a non empty set D from where the object variables take their values.

(2) Interpret and replace each nonlogical symbol of the formula by an appropri-
ate “concrete” symbol. Namely,

(a) A constant a will be interpreted/replaced by some concrete (fixed)
value in D. We denote this by aD.

(b) A function f will be interpreted/replaced by a concrete function fD of
the same arity as f . fD will take inputs from D and give outputs to
D.

(c) A predicate P will be interpreted/replaced by a concrete predicate PD

of the same arity as P . PD will take inputs from D and give as outputs
t or f .

(3) Each formal occurrence of (∀x) and (∃x) in the formula is replaced (for
emphasis) by (∀x ∈ D) and (∃x ∈ D) respectively.

(4) If we apply (1)–(3) to formula A, then we denote by AD the concrete formula
that we have obtain.

†Formal, so-called Tarski-semantics are treated in [2, 3]. For our course this present note
is all you need.
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� After having chosen D there are many choices for symbol interpretations (in-
finitely many, if D is infinite). Thus, (the choice of) D does not uniquely
determine AD. We are comfortable that the context (in the examples that we
consider later on) will fend against any ambiguity. �
1.1 Example. Consider the formula P (x, x), where P is a 2-ary predicate.
Here are a few possible interpretations:

1. D = N (the natural numbers, {0, 1, 2, . . .}), PD =<.

(by “PD =<” I mean that P was interpreted/replaced by “<”, the “less
than” relation on numbers).

Thus,
(
P (x, x)

)D is this formula over N: x < x. By the way, no value
of x makes this true (t).

2. D = N, PD =≤.

Thus,
(
P (x, x)

)D is this formula over N: x ≤ x. By the way, every
value of x makes this true (t).

3. D = {0, {0}} , PD =∈. (“∈” is the concrete “is a member of” relation of
set theory).

Thus,
(
P (x, x)

)D is this formula over D: x ∈ x.

Note that every value of x makes this false (f). Indeed, 0 ∈ 0 is false
because (the right copy of) 0 has no members—it is atomic, not a set—
and {0} ∈ {0} is false because (the right copy of) {0} contains the element
“0”, not the element “{0}”.

�

1.2 Example. Consider the formula f(x) ≈ f(y)⇒ x ≈ y, where f is a 1-ary
(unary) function. Here are a few possible interpretations:

1. D = N, fD(x) = x+ 1 for all x.

Thus,
(
f(x) ≈ f(y)⇒ x ≈ y

)D is this formula over N:

x+ 1 = y + 1⇒ x = y

By the way, every value of x and y makes this formula true (t).

2. D = Z, where Z is the set of all integers, {. . . ,−2,−1, 0, 1, 2, . . .}. We
take here fD(x) = x2 for all x.

Thus,
(
f(x) ≈ f(y)⇒ x ≈ y

)D is this formula over Z:

x2 = y2 ⇒ x = y

The above is true for some, and false for some other, values of x and y.
For example, it is false for x = −2 and y = 2.
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�

1.3� Example. Consider the formula

x ≈ 0⇒ (∀x)x ≈ 0 (1)

Here are a few possible interpretations:

1. D = {3}, 0D = 3.

� “0” is a nonlogical symbol in (1), and as such it has NO fixed meaning.

So, I must interpret it as (replace it by) some element of D. Since there is
only one such element my only option is to set “0D = 3”, as I did above. �
Thus, (1) is interpreted as the following formula over D:

x = 3⇒ (∀x ∈ D)x = 3 (2)

By the way, (2) is true for all values of x. The only value available to us
to plug into the (free) x is “3”. If I do so, then I am looking at the true
formula

3 = 3⇒ (∀x ∈ D)x = 3

(Why true? Because “3 = 3” is t and so is “(∀x ∈ D)x = 3”, since it says
“all values x in D equal 3”.)

2. D = {3, 5}, and again 0D = 3 (I could have taken 0D = 5 instead).

Thus, (1) is interpreted as the following formula over this D:

x = 3⇒ (∀x ∈ D)x = 3 (3)

Now, (3) is false (f) for x = 3, because “3 = 3” is t as before, but
“(∀x ∈ D)x = 3” is f , since it still says “all values x in D equal 3”, which
now fails (D now has two elements. It is not true that both are equal to
3).

Note that (3) is true (t) for x = 5:

5 = 3⇒ (∀x ∈ D)x = 3

3. In class we took D = N and 0D = 0. This led to the interpretation

x = 0⇒ (∀x ∈ N)x = 0

which is false for x = 0.

�

�
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1.4 Example. Let us look at a couple of interpretations of

(∀x)(x ∈ y ≡ x ∈ z)⇒ y ≈ z (1)

1. If we take D to be the collection of all sets,† and ∈D to mean “belongs
to” (which we still denote as “∈”) then we get

(∀x ∈ D)(x ∈ y ≡ x ∈ z)⇒ y = z

which is set theory’s requirement (“axiom of extensionality”) that two
sets, y and z, are equal if they have the same elements. This is true for
all the values (from D) of the free variables y and z.

2. Take D = N and ∈D=<. Then, (1) interprets into:

(∀x ∈ N)(x < y ≡ x < z)⇒ y = z

which is obviously true for all values (from N) of the variables y, z.

3. Take D = N and ∈D= |, where by “|” we denote “divides” (with remainder
0). Then, (1) interprets into:

(∀x ∈ N)(x | y ≡ x | z)⇒ y = z

which is also obviously true for all values (from N) of the variables y, z.

However,

4. Take D = Z and ∈D= |. Now, (1) interprets into:

(∀x ∈ Z)(x | y ≡ x | z)⇒ y = z

which is NOT true for all values (from Z) of the variables y, z.

For example,
(∀x ∈ Z)(x | 2 ≡ x | − 2)⇒ 2 = −2

is false, for the hypothesis (∀x ∈ Z)(x | 2 ≡ x | − 2) is true (2 and −2 do
have the same divisors), but the conclusion 2 = −2 is false.

�

2. Soundness

We will now state a few definitions.

2.1 Definition. (Valid in an interpretation) A formula A is valid in an in-
terpretation with domain D, in symbols

|=D A

iff AD (see item 4, p.1) is true (i.e., t) for all the values—from D—of the
free variables.
†Small print. We are NOT interested here in esoteric issues such as: “But this D is not a set”.
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2.2 Definition. (Universally (or Logically or Absolutely) Valid) A for-
mula A is universally valid (also, “absolutely” or “logically” valid) iff |=D A for
all possible choices of interpretations D.

We indicate that A is universally valid by

|= A

i.e., we drop the subscript from “|=”.

� Remember that we have (consciously) chosen an imperfect notation. When we
say “for all possible choices of interpretations D” recall that—D being but one
ingredient of the interpretation—we mean “for all choices of domain D and
all choices of interpretations aD, . . ., fD, . . . PD, . . . of all the logical symbols
a, . . . , f, . . . , P, . . . that occur in the formula”. �
2.3� Remark. All axioms are universally valid. For example, x ≈ x interprets
as “x = x” over any D, and is clearly true no matter what value (from D) we
plug into x.

(∀x)A ⇒ A[x := t] is universally valid. A careful proof (based on a careful
definition) is beyond our ambitions and goals here. Suffice it to say that when
interpreted, this formula says that if A is true for all values of x then it is also
true for any choice of a fixed value of x. And this sounds true! �

�
We state without proof.

2.4 Theorem. (Soundness) If ` A, then |= A.

� Caution! We are in predicate calculus. Thus, the above holds, but “if ` A,
then |=taut A” is false. For example, ` x ≈ x, (and also |= x ≈ x) but

6|=taut x ≈ x

�
2.5 Theorem. (Gödel’s Completeness Theorem) If |= A, then ` A.

� We will never need the completeness theorem in this course. It is only stated
here for the sake of completeness (no pun intended). �

Soundness, just as in the case of Propositional Calculus, serves the purpose
of obtaining counterexamples. Thus, if for some formula A we do not believe
that ` A, we only need to show that 6|= A.
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2.6� Example. Question: Can our logic derive the “rule”

If Γ ` A, then Γ ` (∀x)A, without a condition on x?

Well, if it could derive the above, it could also derive strong generalization below,
by setting Γ = {A}.†

A ` (∀x)A (1)

Why not? Because (DThm) (1) would yield

` A⇒ (∀x)A (2)

By soundness, (2) yields

|= A⇒ (∀x)A (3)

for no matter what A stands for. (3) is no good, as we saw in Example 1.3—
choosing A to be x ≈ 0 yields bad news—so (2) is no good, so (1) does not hold
in our logic. �

�
2.7� Example. Knowing that strong generalization is illegal in our logic‡ we
can show that certain other suggested “rules” are impossible (underivable) by
“reducing them to strong generalization”, that is by saying

If I could have this rule, then I could do strong generalization. Impossible.

For example, here is why we cannot derive

A ≡ B ` (∀x)(C[p := A]⇒ D) ≡ (C[p := B]⇒ D) (1)

Take B to be the formula true, C to be just ¬p, and D be the formula false.
Then (1) yields

A ` (∀x)A (2)

But (2) is unacceptable (by the previous example), hence so is (1).

†Then A ` A, hence A ` (∀x)A.
‡We have to say “in our logic”, which is that of [1, 2]. In the logic of [3], A ` (∀x)A is

perfectly “legal”.
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In slow motion, we have (keeping an eye on what we said B,C,D are)

(∀x)A

=
〈

WLUS and |=taut X ≡ ¬X ⇒false. C[p := A] is the string ¬A
〉

(∀x)(C[p := A]⇒ D)

=
〈

(1) and Red. true, since A ` A ≡ true
〉

(∀x)(C[p := B]⇒ D)

=
〈

Recall what B,C,D are, and use |=taut X ≡ X
〉

(∀x)(¬true⇒ false)

=
〈

drop ∀, by ` X ≡ (∀y)X when X has no free y
〉

¬true⇒ false

The last formula is a tautology, hence a theorem. Thus, the first line is a
theorem. Assumption used was A.

In the same manner one shows that “8.12(b)” ((1) is “8.12(a)”) is not strong,
i.e., the following is not correct.

D ⇒ (A ≡ B) ` (∀x)(D ⇒ C[p := A]) ≡ (D ⇒ C[p := B])

(see [2]). �

�
2.8 Example. Why insist on choosing a non empty D ?

Take any formula A. Clearly (∀x)A ⇒ (∃x)A is false when interpreted on
an empty domain D.

Why? “(∀x)A” is true, since there are no x values in D to use towards a
counterexample. On the other hand, “(∃x)A” is false, for it says “there exists
an x value that verifies A”. However, there are no values in D to choose from.

“Big deal” you say. Why should we worry about that?
Because it also happens that

` (∀x)A⇒ (∃x)A (1)

If we allow empty D, the above argument shows

6|= (∀x)A⇒ (∃x)A

contradicting soundness, something we do not want to allow! �

2.9 Exercise. Prove (1).
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